A 3 kb DNA fragment from the Streptomyces globisporus 1912 landomycin E (LaE) biosynthetic gene cluster (lnd) was completely sequenced. Three open reading frames were identified, lndGT4, lndZ4, and lndZ5, whose probable translation products resemble a glycosyltransferase, a reductase, and a hydroxylase, respectively. Studies of generated mutants from disruption and complementation experiments involving the lndGT4 gene allowed us to determine that LndGT4 controls the terminal L-rhodinose sugar attachment during LaE biosynthesis and that LndZ4/LndZ5 are responsible for the unique C11-hydroxylation of the landomycins. Generation of the novel landomycins F, G, and H in the course of these studies provided evidence for the flexibility of lnd glycosyltransferases toward their acceptor substrates and a basis for initial structure-activity relationships within the landomycin family of antibiotics.
Streptomyces globisporus strains with knockouts in lndF and lndL genes, previously identified as possibly encoding cyclases governing cyclization of the nascent oligoketide ('polyketide') chain during the biosynthesis of the antitumor angucycline landomycin E, were prepared. On combining the results of sequence analysis and HPLC of extracts from mutant strains, lndL was suggested to control the first cyclization-aromatization event and lndF to be responsible for the 3rd-4th ring formation.
Actinoplanes teichomyceticus produces teicoplanin (Tcp), a "last resort" lipoglycopeptide antibiotic used to treat severe multidrug resistant infections such as methicillin-resistant Staphylococcus aureus (MRSA). A number of studies have addressed various steps of Tcp biosynthesis using in vitro assays, although the exact sequence of Tcp peptide core tailoring reactions remained speculative. Here, we describe the generation and analysis of a set of A. teichomyceticus mutant strains that have been used to elucidate the sequence of reactions from the Tcp aglycone to mature Tcp. By combining these results with previously published data, we propose an updated order of post-assembly line tailoring processes in Tcp biosynthesis. We also demonstrate that the acyl-CoA-synthetase Tei13* and the type II thioesterase Tei30* are dispensable for Tcp production. Five Tcp derivatives featuring hitherto undescribed combinations of glycosylation and acylation patterns are described. The generation of strains that produce novel Tcp analogues now provides a platform for the production of additional Tcp-like molecules via combinatorial biosynthesis or chemical derivatization.
The spread of antimicrobial resistance (AMR) creates a challenge for global health security, rendering many previously successful classes of antibiotics useless. Unfortunately, this also includes glycopeptide antibiotics (GPAs), such as vancomycin and teicoplanin, which are currently being considered last-resort drugs. Emerging resistance towards GPAs risks limiting the clinical use of this class of antibiotics—our ultimate line of defense against multidrug-resistant (MDR) Gram-positive pathogens. But where does this resistance come from? It is widely recognized that the GPA resistance determinants—van genes—might have originated from GPA producers, such as soil-dwelling Gram-positive actinobacteria, that use them for self-protection. In the current work, we present a comprehensive bioinformatics study on the distribution and phylogeny of GPA resistance determinants within the Actinobacteria phylum. Interestingly, van-like genes (vlgs) were found distributed in different arrangements not only among GPA-producing actinobacteria but also in the non-producers: more than 10% of the screened actinobacterial genomes contained one or multiple vlgs, while less than 1% encoded for a biosynthetic gene cluster (BGC). By phylogenetic reconstructions, our results highlight the co-evolution of the different vlgs, indicating that the most diffused are the ones coding for putative VanY carboxypeptidases, which can be found alone in the genomes or associated with a vanS/R regulatory pair.
Glycopeptide antibiotics are valuable natural metabolites endowed with different pharmacological properties, among them are dalbaheptides used to treat different infections caused by multidrug-resistant Gram-positive pathogens. Dalbaheptides are produced by soil-dwelling high G-C Gram-positive actinobacteria. Their biosynthetic pathways are encoded within large biosynthetic gene clusters. A non-ribosomally synthesized heptapeptide aglycone is the common scaffold for all dalbaheptides. Different enzymatic tailoring steps, including glycosylation, are further involved in decorating it. Glycosylation of dalbaheptides is a crucial step, conferring them specific biological activities. It is achieved by a plethora of glycosyltransferases, encoded within the corresponding biosynthetic gene clusters, able to install different sugar residues. These sugars might originate from the primary metabolism, or, alternatively, their biosynthesis might be encoded within the biosynthetic gene clusters. Already installed monosaccharides might be further enzymatically modified or work as substrates for additional glycosylation. In the current minireview, we cover recent updates concerning the genetics and enzymology behind the glycosylation of dalbaheptides, building a detailed and consecutive picture of this process and of its biological evolution. A thorough understanding of how glycosyltransferases function in dalbaheptide biosynthesis might open new ways to use them in chemo-enzymatic synthesis and/or in combinatorial biosynthesis for building novel glycosylated antibiotics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.