Reboxetine is a specific norepinephrine transporter (NET) inhibitor and has been marketed in several countries as a racemic mixture of the (R,R) and (S,S) enantiomers for the treatment of depression. Its methyl analog (methylreboxetine, MRB) has been shown to be more potent than reboxetine itself. We developed a nine-step synthetic procedure to prepare the normethyl precursor, which was used to synthesize [11C]O-methylreboxetine ([11C]MRB). We also developed a convenient resolution method using a chiral HPLC column to resolve the racemic precursor to obtain enantiomerically pure individual precursors that lead to the individual enantiomers (R,R)-[11C]MRB and (S,S)-[11C]MRB. Here we report an evaluation of the racemate and individual enantiomers of [11C]MRB as radioligands for PET imaging studies of NET systems in baboons both in brain and in peripheral organs. The relative regional distribution of the radioactivity after injection of [11C]MRB in baboon brain is consistent with the known distribution of NET. For a NET-poor region such as striatum, there were no significant changes in the striatal uptakes with and without the nisoxetine pretreatment. In contrast, a significant blocking effect was observed in NET-rich regions such as thalamus and cerebellum after injection of racemic [11C]MRB, with an even more dramatic effect after injection of (S,S)-[11C]MRB. These results, along with the fact that there was no regional specificity and no blocking effect by nisoxetine for (R,R)-[11C]MRB, suggest the enantioselectivity of MRB in vivo, consistent with previous in vitro and in vivo studies in rodents. PET studies of baboon torso revealed a blocking effect by desipramine only in the heart, a NET-rich organ, after injection of (S,S)-[11C]MRB, but not the (R,R)-isomer. These studies demonstrate that the use of (S,S)-[11C]MRB would allow a better understanding of the role that NET plays in living systems.
One of the major mechanisms for terminating the actions of catecholamines and vasoactive dietary amines is oxidation by monoamine oxidase (MAO). Smokers have been shown to have reduced levels of brain MAO, leading to speculation that MAO inhibition by tobacco smoke may underlie some of the behavioral and epidemiological features of smoking. Because smoking exposes peripheral organs as well as the brain to MAO-inhibitory compounds, we questioned whether smokers would also have reduced MAO levels in peripheral organs. Here we compared MAO B in peripheral organs in nonsmokers and smokers by using positron emission tomography and serial scans with the MAO B-specific radiotracers,L-[ 11 C]deprenyl and deuterium-substituted L-[ 11 C]deprenyl (L-[ 11 C]deprenyl-D2). Binding specificity was assessed by using the deuterium isotope effect. We found that smokers have significantly reduced MAO B in peripheral organs, particularly in the heart, lungs, and kidneys, when compared with nonsmokers. Reductions ranged from 33% to 46%. Because MAO B breaks down catecholamines and other physiologically active amines, including those released by nicotine, its inhibition may alter sympathetic tone as well as central neurotransmitter activity, which could contribute to the medical consequences of smoking. In addition, although most of the emphases on the carcinogenic properties of smoke have been placed on the lungs and the upper airways, this finding highlights the fact that multiple organs in the body are also exposed to pharmacologically significant quantities of chemical compounds in tobacco smoke. S moking is a major public health problem affecting multiple organ systems and resulting in Ϸ440,000 deaths per year in the United States alone (1). Yet, we still know very little about the molecular mechanisms underlying smoking behavior and toxicity. In addition, even though tobacco smoke contains Ϸ4,000 chemical compounds, pharmacological studies have focused mainly on nicotine (2). We have shown that smokers have reduced levels of brain monoamine oxidase (MAO; EC 1.4.3.4) and that this is not an effect of nicotine (3-5). MAO oxidizes amines and produces hydrogen peroxide as a byproduct. It is present in virtually every organ in the body and occurs in two different subtypes, MAO A and MAO B, which are different gene products. MAO A and B have different substrate and inhibitor specificities (6). MAO A preferentially oxidizes norepinephrine and serotonin and is selectively inhibited by clorgyline (7), whereas MAO B preferentially breaks down benzylamine and phenylethylamine (PEA), and is selectively inhibited by L-deprenyl (8). Both forms oxidize dopamine and tyramine (9). The relative ratios of MAO A and B in different organs are both organ-and species-dependent, making it difficult to use animals as a model for humans (10).Because MAO is one of the phase I oxidative enzymes (11), and its substrates include many physiologically active amines, including some of those released by nicotine, the documentation of reduced brain MAO B levels ...
Methylphenidate (MP) (Ritalin) is widely used for the treatment of attention deficit hyperactivity disorder (ADHD). It is a chiral drug, marketed as the racemic mixture of d-and l-threo enantiomers. Our previous studies (PET and microdialysis) in humans, baboons, and rats confirm the notion that pharmacological specificity of MP resides predominantly in the d-isomer. A recent report that intraperitoneally (i.p.) administered l-threo-MP displayed potent, dose-dependent inhibition of cocaine-or apomorphine-induced locomotion in rats, raises the question of whether l-threo-MP has a similar effect when given orally. It has been speculated that l-threo-MP is poorly absorbed in humans when it is given orally because of rapid presystemic metabolism. To investigate whether l-threo-MP or its metabolites can be delivered to the brain when it is given orally, and whether l-threo-MP is pharmacologically active. PET and MicroPET studies were carried out in baboons and rats using orally delivered C-11-labeled d-and l-threo-MP ([methyl- ]CO 2 , derived from demethylation, was excluded by ex vivo studies in rats. When l-threo-MP was given i.p. to mice at a dose of 3 mg/kg, it neither stimulated locomotor activity nor inhibited the increased locomotor activity due to cocaine administration. These results suggest that, in animal models, l-threo-MP or its metabolite(s) is (are) absorbed from the gastrointestinal tract and enters the brain after oral administration, but that l-threo-MP may not be pharmacologically active. These results are pertinent to the question of whether l-threo-MP contributes to the behavioral and side effect profile of MP during treatment of ADHD. Synapse 53: 168 -175, 2004.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.