While the problem of answering positive existential queries, in particular, conjunctive queries (CQs) and unions of CQs, over description logic ontologies has been studied extensively, there have been few attempts to analyse queries with negated atoms. Our aim is to sharpen the complexity landscape of the problem of answering CQs with negation and inequalities in lightweight description logics of the DL-Lite and EL families. We begin by considering queries with safe negation and show that there is a surprisingly significant increase in the complexity from AC 0 to undecidability (even if the ontology and query are fixed and only the data is regarded as input). We also investigate the problem of answering queries with inequalities and show that answering a single CQ with one inequality over DL-Lite with role inclusions is undecidable. In the light of our undecidability results, we explore syntactic restrictions to attain efficient query answering with negated atoms. In particular, we identify a novel class of local CQs with inequalities, for which query answering over DL-Lite is decidable.
We study the description logic SQ with number restrictions applicable to transitive roles, extended with either nominals or inverse roles. We show tight 2EXPTIME upper bounds for unrestricted entailment of regular path queries for both extensions and finite entailment of positive existential queries for nominals. For inverses, we establish 2EXPTIME-completeness for unrestricted and finite entailment of instance queries (the latter under restriction to a single, transitive role).
We introduce the query-by-example (QBE) paradigm for query answering in the presence of ontologies. Intuitively, QBE permits non-expert users to explore the data by providing examples of the information they (do not) want, which the system then generalizes into a query. Formally, we study the following question: given a knowledge base and sets of positive and negative examples, is there a query that returns all positive but none of the negative examples? We focus on description logic knowledge bases with ontologies formulated in Horn-ALCI and (unions of) conjunctive queries. Our main contributions are characterizations, algorithms and tight complexity bounds for QBE.
We introduce Description Logics of Context (DLCs)-an extension of Description Logics (DLs) for context-based reasoning. Our approach descends from J. McCarthy's tradition of treating contexts as formal objects over which one can quantify and express first-order properties. DLCs are founded in two-dimensional possible world semantics, where one dimension represents a usual object domain and the other a domain of contexts, and accommodate two interacting DL languages-the object and the context language-interpreted over their respective domains. Effectively, DLCs comprise a family of two-sorted, two-dimensional combinations of pairs of DLs. We argue that this setup ensures a well-grounded, generic framework for capturing and studying mechanisms of contextualization in the DL paradigm. As the main technical contribution, we prove 2ExpTime-completeness of the satisfiability problem in the maximally expressive DLC, based on the DL SHIO. As an interesting corollary, we show that under certain conditions this result holds also for a range of two-dimensional DLs, including the prominent (Kn)ALC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.