Xeroderma pigmentosum variant (XP-V) cells are deficient in their ability to synthesize intact daughter DNA strands after UV irradiation. This deficiency results from mutations in the gene encoding DNA polymerase , which is required for effecting translesion synthesis (TLS) past UV photoproducts. We have developed a simple cellular procedure to identify XP-V cell strains, and have subsequently analyzed the mutations in 21 patients with XP-V. The 16 mutations that we have identified fall into three categories. Many of them result in severe truncations of the protein and are effectively null alleles. However, we have also identified five missense mutations located in the conserved catalytic domain of the protein. Extracts of cells falling into these two categories are defective in the ability to carry out TLS past sites of DNA damage. Three mutations cause truncations at the C terminus such that the catalytic domains are intact, and extracts from these cells are able to carry out TLS. From our previous work, however, we anticipate that protein in these cells will not be localized in the nucleus nor will it be relocalized into replication foci during DNA replication. The spectrum of both missense and truncating mutations is markedly skewed toward the N-terminal half of the protein. Two of the missense mutations are predicted to affect the interaction with DNA, the others are likely to disrupt the threedimensional structure of the protein. There is a wide variability in clinical features among patients, which is not obviously related to the site or type of mutation. X eroderma pigmentosum (XP) is a rare autosomal recessive disorder characterized by extreme sensitivity of the skin to sunlight-induced changes (1). In particular, affected individuals have a 1,000-fold increase in the incidence of sunlight-induced skin cancers. Genetically, XP is complex and in the majority of patients the clinical features result from a defect in one of seven genes, XPA-G, controlling nucleotide excision repair (NER). The products of these XP genes are involved in one or other of the steps in the NER process (2, 3). Approximately 20% of patients with XP are so-called XP variants (XP-V), which are defined by their normal levels of NER. Cultured fibroblasts from XP-V donors are only mildly sensitive to the killing effects of UV light, in contrast to the NER-defective XP cells, which have very marked hypersensitivity. Both NER-defective XP and XP-V cells are hypersensitive to the mutagenic effects of UV irradiation (4-6).The defect in XP-V cells is a reduced ability to replicate DNA after irradiation (also referred to as postreplication repair). XP-V cells are unable to synthesize intact daughter DNA strands on UV-irradiated templates (7). In vitro studies showed that this deficiency resulted from an inability to carry out translesion synthesis (TLS), the synthesis of DNA directly past damaged sites (8). These and other in vitro studies led to the cloning of the gene deficient in patients with XP-V (9, 10), and the demonstration that the ...
Cerebro-oculo-facio-skeletal (COFS) syndrome is a recessively inherited rapidly progressive neurologic disorder leading to brain atrophy, with calcifications, cataracts, microcornea, optic atrophy, progressive joint contractures, and growth failure. Cockayne syndrome (CS) is a recessively inherited neurodegenerative disorder characterized by low to normal birth weight, growth failure, brain dysmyelination with calcium deposits, cutaneous photosensitivity, pigmentary retinopathy and/or cataracts, and sensorineural hearing loss. Cultured CS cells are hypersensitive to UV radiation, because of impaired nucleotide-excision repair (NER) of UV-induced damage in actively transcribed DNA, whereas global genome NER is unaffected. The abnormalities in CS are caused by mutated CSA or CSB genes. Another class of patients with CS symptoms have mutations in the XPB, XPD, or XPG genes, which result in UV hypersensitivity as well as defective global NER; such patients may concurrently have clinical features of another NER syndrome, xeroderma pigmentosum (XP). Clinically observed similarities between COFS syndrome and CS have been followed by discoveries of cases of COFS syndrome that are associated with mutations in the XPG and CSB genes. Here we report the first involvement of the XPD gene in a new case of UV-sensitive COFS syndrome, with heterozygous substitutions-a R616W null mutation (previously seen in patients in XP complementation group D) and a unique D681N mutation-demonstrating that a third gene can be involved in COFS syndrome. We propose that COFS syndrome be included within the already known spectrum of NER disorders: XP, CS, and trichothiodystrophy. We predict that future patients with COFS syndrome will be found to have mutations in the CSA or XPB genes, and we document successful use of DNA repair for prenatal diagnosis in triplet and singleton pregnancies at risk for COFS syndrome. This result strongly underlines the need for screening of patients with COFS syndrome, for either UV sensitivity or DNA-repair abnormalities.
A biochemical variant of argininosuccinate lyase deficiency, found in five individuals, is introduced. In comparison to classical patients, the variant cases of argininosuccinate lyase deficiency were characterized by residual enzyme activity as measured by the incorporation of [14C]citrulline into proteins. The five patients of different ethnic backgrounds presented with relatively mild clinical symptoms, variable age of onset, marked argininosuccinic aciduria and severe, but not complete, deficiency of argininosuccinate lyase. [14C]Citrulline incorporation into proteins, which is completely blocked in classical argininosuccinic aciduria, was only partially reduced in fibroblasts of these patients. Further investigation showed that previous standard conditions of the assay were not optimal. Higher concentrations of citrulline in the incubation medium strongly stimulated 14C incorporation in normal cells, but not in the patients; as a result, the relative incorporation level in the patients dropped to 6-28% compared to 18-75% of normal in the original procedure. Prenatal diagnosis was successfully performed in three of the families. Affected pregnancies were indicated by (partial) deficiency of [14C]citrulline incorporation in chorionic villi and/or increased levels of argininosuccinate in amniotic fluid. Analysis of the ASL gene in the five patients revealed a considerable allelic heterogeneity. Three novel mutations--R385C (2 patients), V178M and R379C--were detected in homozygous states, whereas one patient was compound heterozygous for the known mutations R193Q and Q286R. In conclusion, there are patients of different ethnic backgrounds who are characterized by residual activity of argininosuccinate lyase and who present with less severe clinical courses. In addition, we present an improved biochemical assay for accurate prenatal and postnatal diagnosis.
The results suggest the occurrence of preferential transmission of the mutant allele. An explanation for this phenomenon may be found in a protective role of argininosuccinic acid synthetase deficiency in mutant sperm cells against the possibly detrimental or apoptotic effect of nitric oxide produced normally from arginine by nitric oxide synthase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.