In March 2020, the first case of Covid-19 was found in Indonesia. The increase of confirmed, suspected, and exposed in Surabaya has also significantly. Some studies show there is a relation among temperature, humidity, suspected, and exposed patients in an area with the number of confirmed COVID-19. Several statistical techniques that can be used to determine this relationship are to analyze and predict it using the ARIMA, bivariate, and multivariate transfer functions. The aim of this study is the performance of three models and determine the best model. The performance on the training data for ARIMA is 0.376, which shows that the accuracy of the model is 37.6%. The bivariate transfer function accuracy is 0.409, and the accuracy of the multivariate transfer function is 0.478. The result performance of ARIMA testing is 0.074, the bivariate transfer function is 0.055, and the multivariate transfer function is 0.108. The multivariate transfer function forecasting model is a technique in this case with the best performance.
Permasalahan dalam penelitian ini adalah permasalahan prediksi hasil penjumlahan beberapa urutan berkala. Dalam permasalahan ini, diberikan banyak urutan berkala N dimana panjang dari masing-masing urutan berkala berbeda satu dengan yang lainnya. Panjang dari urutan berkala dimulai dari N, N-1, N-2, hingga 1. Diberikan nilai f(0), f(1), f(2), hingga f(N 2-1), dimana f(x) didefinisikan sebagai penjumlahan tiap elemen N buah urutan berkala. Selanjutnya ditanyakan nilai f(x) dari nilai x yang diberikan. Penelitian ini akan mengimplementasikan metode pencarian solusi sistem persamaan linear, yaitu metode eliminasi gauss. Implementasi dalam penelitian ini menggunakan bahasa pemrograman C++. Hasil uji coba menunjukkan bahwa metode gauss eliminasi dapat menghasilkan jawaban permasalahan dengan benar, tetapi membutuhkan waktu yang sangat lama, yaitu dengan kompleksitas O(TN 6 + TN 3). Perlu adanya optimasi dengan mengubah permasalahan ke dalam bentuk interpolasi trigonometri yang diselesaikan dengan metode interpolasi polinomial Lagrange dan perkalian polinomial yang diselesaikan dengan metode transformasi Fourier cepat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.