We present an epidemiological study of malware encounters in a large, multi-national enterprise. Our data sets allow us to observe or infer not only malware presence on enterprise computers, but also malware entry points, network locations of the computers (i.e., inside the enterprise network or outside) when the malware were encountered, and for some web-based malware encounters, web activities that gave rise to them. By coupling this data with demographic information for each host's primary user, such as his or her job title and level in the management hierarchy, we are able to paint a reasonably comprehensive picture of malware encounters for this enterprise. We use this analysis to build a logistic regression model for inferring the risk of hosts encountering malware; those ranked highly by our model have a > 3× higher rate of encountering malware than the base rate. We also discuss where our study confirms or refutes other studies and guidance that our results suggest.
As traffic volumes and the types of analysis grow, network intrusion detection systems (NIDS) face a continuous scaling challenge. Management realities, however, limit NIDS hardware upgrades to occur typically once every 3-5 years. Given that traffic patterns can change dramatically, this leaves a significant scaling challenge in the interim. This motivates the need for practical solutions that can help administrators better utilize and augment their existing NIDS infrastructure. To this end, we design a general architecture for network-wide NIDS deployment that leverages three scaling opportunities: on-path distribution to split responsibilities, replicating traffic to NIDS clusters, and aggregating intermediate results to split expensive NIDS processing. The challenge here is to balance both the compute load across the network and the total communication cost incurred via replication and aggregation. We implement a backwards-compatible mechanism to enable existing NIDS infrastructure to leverage these benefits. Using emulated and trace-driven evaluations on several real-world network topologies, we show that our proposal can substantially reduce the maximum computation load, provide better resilience under traffic variability, and offer improved detection coverage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.