Two patterns commonly emerge when animal body size is analyzed as a function of latitudinal distribution. First, body size increases with latitude, a temperature effect known as Bergmann's rule, and second, the converse to Bergmann's rule, a pattern in which body size decreases with latitude. However, other geographic patterns can emerge when the mechanisms that generate Bergmann's and the converse to Bergmann's clines operate together. Here, we use phylogenetic comparative analysis in order to control for phylogenetic inertia, and we show that bumblebees exhibit the converse to Bergmann's rule. Bumblebee taxa are distributed worldwide in temperate and tropical regions. The largest species are found in places with high water availability during the driest time of the year. Nonetheless, large body size is constrained by extreme temperatures. Bumblebees’ body size could be related to a higher extent to the size of food rewards to be harvested than to the energetic advantages of thermoregulation. Moreover, we found that the body size of eusocial and cuckoo species responded in the same way to environmental variables, suggesting that they have not diverged due to different selective pressures.
Cryptic coloration is an adaptative defensive mechanism against predators. Color patterns can become cryptic through background coloration‐matching and disruptive coloration. Disruptive coloration may evolve in visually heterogeneous microhabitats, whereas background matching could be favored in chromatically homogeneous microhabitats. In this work, we used digital photography to explore the potential use of disruptive coloration and background matching in males and females of two grasshopper species of the Sphenarium genus in different habitats. We found chromatic differences in the two grasshopper species that may be explained by local adaptation. We also found that the females and males of both species are dichromatic and seem to follow different color cryptic strategies, males are more disruptive than females, whereas females have a high background matching with less disruptive elements. The selective pressures of the predators in different microhabitats and the differences in mobility between sexes may explain the color pattern divergence between females and males. Nevertheless, more field experiments are needed in order to understand the relative importance of disruptive and background matching coloration in the evolution of sexual dichromatism in these grasshoppers.
Cryptic coloration is an adaptative defensive mechanism against predators. Colour patterns appear cryptic through general background coloration matching or disruptive coloration. Disruptive coloration might evolve in visually heterogeneous microhabitats, whereas background matching could be favoured in chromatically homogeneous microhabitats. In this study, we used digital photography to explore the potential use of disruptive coloration and background matching in males and females of the Neotropical grasshopper Sphenarium purpurascens in different habitats. We found chromatic differences in three habitats and sexual dichromatism that might be explained by local adaptation. Although females and males were sexually dichromatic, interpopulation differences were found in the magnitude of the sexual dichromatism. In a highly contrasting environment, both males and females seemed to follow a disruptive strategy, whereas in a heterogeneous environments males and females followed different colour cryptic strategies, in which males were more disruptive than females, and females exhibited high background matching with fewer disruptive elements. Selective predation in different microhabitats and differences in mobility between the sexes might explain the colour pattern divergence between females and males.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.