Stereochemically inert and positively charged chiral complexes of Co III prepared from Schiff bases derived from chiral diamines and salicylaldehydes were shown to be efficient catalysts of the asymmetric phase transfer benchmark reaction of alkylation of O'Donnell's substrate with alkyl halides. The enantiomeric purities of the reaction products were up to 92%.
Stereochemically inert cationic cobalt(III) complexes were shown to be one-component catalysts for the synthesis of cyclic carbonates from epoxides and carbon dioxide at 50 °C and 5 MPa carbon dioxide pressure. The optimal catalyst possessed an iodide counter anion and could be recycled. A catalytic cycle is proposed in which the ligand of the cobalt complexes acts as a hydrogen-bond donor, activating the epoxide towards ring opening by the halide anion and activating the carbon dioxide for subsequent reaction with the halo-alkoxide. No kinetic resolution was observed when terminal epoxides were used as substrates, but chalcone oxide underwent kinetic resolution.
Stereochemically inert and positively charged chiral complexes of cobalt(III) prepared from Schiff bases derived from chiral diamines and salicylaldehydes were shown to be efficient catalysts of the benchmark asymmetric phase‐transfer Michael addition of nine activated olefins to O’Donnell’s substrate. The reaction products had enantiomeric purities of up to 96%. DFT calculations were invoked to rationalize the stereochemistry of the addition.magnified image
Catalyze this! Detailed study of the mechanism of asymmetric cyanohydrin synthesis catalyzed by VO(salen)X complexes (see figure) led to the development of VO(salen)NCS, as the most active vanadium-based catalyst yet developed for this reaction.The mechanism by which oxovanadium(V)(salen) complexes(1) VO(salen)X catalyze the asymmetric addition of trimethylsilyl cyanide to benzaldehyde has been studied. The reaction kinetics indicated that the structure of the counterion (X) had a significant influence on the rate, but not on the enantioselectivity of the reaction. The less coordinating the counterion, the lower the catalytic activity; a trend that was confirmed by a Hammett analysis. Variable temperature kinetics allowed the enthalpies and entropies of activation to be determined for some catalysts, and showed that, for others, the overall reaction order changes from second order to zero order as the temperature is reduced. The order with respect to the catalyst was determined for nine of the VO(salen)X complexes and showed that the less active catalysts were active predominantly as mononuclear species whilst the more active catalysts were active predominantly as dinuclear species. Mass spectrometry confirmed the formation of dinuclear species in situ from all of the VO(salen)X complexes and indicated that the dinuclear complexes contained one vanadium(V) and one vanadium(IV) ion. The latter conclusion was supported by cyclic voltammetry of the complexes, by fluorescence measurements and by the fact that catalyst deactivation occurs when reactions are carried out under an inert atmosphere. Based on this evidence, it has been deduced that the catalysis involves two catalytic cycles: one for catalysis by mononuclear VO(salen)X species and the other for catalysis by dinuclear species. The catalytic cycle involving dinuclear species involves activation of both the cyanide and aldehyde, whereas the catalytic cycle involving mononuclear species activates only the aldehyde, thus explaining the higher catalytic activity observed for catalysts which are predominantly active as dinuclear complexes. Based on these mechanistic results, two new VO(salen)X complexes (X=F and NCS) were predicted to form highly active catalysts for asymmetric cyanohydrin synthesis. VO(salen)NCS was indeed found to be the most active catalyst of this type and catalyzed the asymmetric addition of trimethylsilyl cyanide to thirteen aldehydes. In each case, high yields and enantioselectivities were obtained after a reaction time of two hours at room temperature using just 0.1 mol % of the catalyst.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.