The chemistry in low pressure (0.8-8 Pa) plasmas of H(2) + 10% N(2) mixtures has been experimentally investigated in a hollow cathode dc reactor using electrical probes for the estimation of electron temperatures and densities, and mass spectrometry to determine the concentration of ions and stable neutral species. The analysis of the measurements by means of a kinetic model has allowed the identification of the main physicochemical mechanisms responsible for the observed distributions of neutrals and ions and for their evolution with discharge pressure. The chemistry of neutral species is dominated by the formation of appreciable amounts of NH(3) at the metallic walls of the reactor through the successive hydrogenation of atomic nitrogen and nitrogen containing radicals. Both Eley-Rideal and Langmuir-Hinshelwood mechanisms are needed in the chain of hydrogenation steps in order to account satisfactorily for the observed ammonia concentrations, which, in the steady state, are found to reach values ~30-70% of those of N(2). The ionic composition of the plasma, which is entirely due to gas-phase processes, is the result of a competition between direct electron impact dissociation, more relevant for high electron temperatures (lower pressures), and ion-molecule chemistry that prevails for the lower electron temperatures (higher pressures). At the lowest pressure, products from the protonation of the precursor molecules (H(3)(+), N(2)H(+) and NH(4)(+)) and others from direct ionization (H(2)(+) and NH(3)(+)) are found in comparable amounts. At the higher pressures, the ionic distribution is largely dominated by ammonium. It is found that collisions of H(3)(+), NH(3)(+) and N(2)H(+) with the minor neutral component NH(3) are to a great extent responsible for the final prevalence of NH(4)(+).
The chemical composition of a low-pressure hydrogen dc plasma produced in a hollow cathode discharge has been measured and modeled. The concentrations of H atoms and of H + , H 2 + and H 3 + ions were determined with a combination of optical spectroscopic and mass spectrometric techniques, over the range of pressures (p ∼0.008-0.2 mbar) investigated. The results were rationalized with the help of a zero-order kinetic model. A comparatively high fraction (∼0.1 ( 0.05) of H atoms, indicative of a relatively small wall recombination, was observed. Low ionization degrees (<10 -4 ) were obtained in all cases. In general, the ionic composition of the plasma was found to be dominated by H 3 + , except at the lowest pressures, where H 2 + was the major ion. The key physicochemical processes determining the plasma composition were identified from the comparison of experimental and model results, and are discussed in the paper.
Recent progress in the study of insertion reactions of hydrogen molecules with excited atoms is reviewed in this article. In particular, the dynamics of the reaction of O(1D), N(2D), C(1D), and S(1D) with H2 and its isotopomers, which have received a great deal of attention over the past decade, are examined in detail. All of these systems have in common the existence of several potential energy surfaces (PES) correlating with the reagents' states, and consequently, they can give rise to reaction following different adiabatic and nonadiabatic pathways. The main contribution, however, arises from their ground singlet PESs which feature the existence of deep wells with small or null barriers for insertion. Accordingly, these reactions proceed mainly via formation of relatively long-lived collision complexes and display an overall nearly statistical behavior. In spite of their similarities, the various reactions have peculiar characteristics caused by important differences of their respective PESs. The contribution of excited PES to the global reactivity, which has also become an important issue and a challenge both for theory and experiment, is also examined. The different theoretical approaches are discussed in the text, along with the experimental results obtained by a variety of techniques. The recent exact quantum treatments of these reactive systems together with the development of a rigorous statistical model have contributed to a very accurate description which in many cases matches very well the detailed measurements. The quasi-classical trajectory (QCT) method has also provided a fairly accurate description of the reaction dynamics for these systems. In particular, the analysis in terms of collision times has yielded interesting clues about the reaction mechanisms.
Context. Ice mantles that formed on top of dust grains are photoprocessed by the secondary ultraviolet (UV) field in cold and dense molecular clouds. UV photons induce photochemistry and desorption of ice molecules. Experimental simulations dedicated to ice analogs under astrophysically relevant conditions are needed to understand these processes. Aims. We present UV-irradiation experiments of a pure CO 2 ice analog. Calibration of the quadrupole mass spectrometer allowed us to quantify the photodesorption of molecules to the gas phase. This information was added to the data provided by the Fourier transform infrared spectrometer on the solid phase to obtain a complete quantitative study of the UV photoprocessing of an ice analog. Methods. Experimental simulations were performed in an ultra-high vacuum chamber. Ice samples were deposited onto an infrared transparent window at 8K and were subsequently irradiated with a microwave-discharged hydrogen flow lamp. After irradiation, ice samples were warmed up until complete sublimation was attained. Results. Photolysis of CO 2 molecules initiates a network of photon-induced chemical reactions leading to the formation of CO, CO 3 , O 2 , and O 3 . During irradiation, photon-induced desorption of CO and, to a lesser extent, O 2 and CO 2 took place through a process called indirect desorption induced by electronic transitions, with maximum photodesorption yields (Y pd ) of ∼1.2 × 10 −2 molecules incident photon −1 , ∼9.3 × 10 −4 molecules incident photon −1 , and ∼1.1 × 10 −4 molecules incident photon −1 , respectively. Conclusions. Calibration of mass spectrometers allows a direct quantification of photodesorption yields instead of the indirect values that were obtained from infrared spectra in most previous works. Supplementary information provided by infrared spectroscopy leads to a complete quantification, and therefore a better understanding, of the processes taking place in UV-irradiated ice mantles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.