Following mitosis, daughter cells must inherit a functional set of essential proteins and organelles. We applied a genetic tool to simultaneously monitor the kinetics and distribution of old and new proteins marking all intracellular compartments in budding yeasts. Most organelles followed a general pattern whereby preexisting proteins are symmetrically partitioned followed by template-based incorporation of new proteins. Peroxisomes belong to this group, supporting a model of biogenesis by growth and division from preexisting peroxisomes. We detected two exceptions: the nuclear pore complex (NPC) and the spindle pole body (SPB). Old NPCs are stably inherited during successive generations but remained separated from new NPCs, which are incorporated de novo in mother and daughter cells. Only the SPB displayed asymmetrical distribution, with old components primarily inherited by daughter cells and new proteins equally incorporated in both cells. Our analysis resolves conflicting models (peroxisomes, NPC) and reveals unique patterns (NPC, SPB) of organelle inheritance.Saccharomyces cerevisiae | protein dynamics | nuclear envelope | centrosome | live-cell imaging
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.