The incidence of acute kidney injury following cardiac surgery (CSA-AKI) is up to 30%, and it places patients at an increased risk of death. The Leicester score (LS) is a new score that predicts CSA-AKI of any stage with better discrimination compared to previous scores. The aim of this study was to identify risk factors for CSA-AKI and to assess the performance of LS. A unicentric retrospective study of patients that required cardiac surgery with cardio-pulmonary bypass (CPB) in 2015 was performed. The inclusion criteria were patients over 18 years old who were operated on for cardiac surgery (valve substitution (VS), Coronary Artery Bypass Graft (CABG), or a combination of both procedures and requiring CPB). CSA-AKI was defined with the Kidney Disease Improving Global Outcomes (KDIGO) criteria. In the multivariate analysis, hypertension (odds ratio 1.883), estimated glomerular filtration rate (EGFR) <60 mL/min (2.365), and peripheral vascular disease (4.66) were associated with the outcome. Both discrimination and calibration were better when the LS was used compared to the Cleveland Clinic Score and Euroscore II, with an area under the curve (AUC) of 0.721. In conclusion, preoperative hypertension in patients with CKD with or without peripheral vasculopathy can identify patients who are at risk of CSA-AKI. The LS was proven to be a valid score that could be used to identify patients who are at risk and who could benefit from intervention studies.
Diuretics are commonly used in critically ill patients with acute kidney injury (AKI) and fluid overload in intensive care units (ICU), furosemide being the diuretic of choice in more than 90% of the cases. Current evidence shows that other diuretics with distinct mechanisms of action could be used with good results in patients with selected profiles. From acetazolamide to tolvaptan, we will discuss recent studies and highlight how specific diuretic mechanisms could help to manage different ICU problems, such as loop diuretic resistance, hypernatremia, hyponatremia, or metabolic alkalosis. The current review tries to shed some light on the potential use of non-loop diuretics based on patient profile and give recommendations for loop diuretic treatment performance focused on what the intensivist and critical care nephrologist need to know based on the current evidence.
Background A key point in dialysis treatment is the prescription of dialysate sodium (Na). This study aimed to describe the practical implementation of a new automated dialysate Na control biosensor and to assess its tolerance and the beneficial clinical effects of isonatremic dialysis. Methods A prospective study was carried out in 86 patients who, along with their usual parameters, received the following five consecutive phases of treatment for 3 weeks each: phase 0: baseline 5008 machine; phases 1 and 2: 6008 machine without activation of the Na control biosensor and the same fixed individualized Na dialysate prescription or adjusted to obtain similar conductivity to phase 0; phases 3 and 4: activated Na control to isonatremic dialysis (Na dialysate margins 135–141 or 134-142 mmol/L). Results When the Na control was activated, the few episodes of cramps or hypotension disappeared when the lower dialysate Na margin was increased by 1 or 2 mmol/L. The activated Na control module showed significant differences compared with baseline and the non-activated Na module in final serum Na values, diffusive Na balance, and changes in pre- to postdialysis plasma Na values. The mean predialysis systolic blood pressure value was significantly lower in phase 4 than in phase 1. There were no significant differences in total Na balance in the four 6008 phases evaluated. Conclusions The implementation of the automated dialysate Na control module is a useful new tool, which reduced the diffusive load of Na with good tolerance. The module had the advantages of reducing thirst, interdialytic weight gain, and intradialytic plasma Na changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.