The cry gene content of Bacillus thuringiensis subsp. aizawai HD-133 was analyzed by a combination of high-pressure liquid chromatography (HPLC) and exclusive PCR. A total of six cry genes were detected in genomic DNA purified from HD-133, four from the cry1 family (cry1Aa, cry1Ab, cry1C, andcry1D) as well as a gene each from the cry2(cry2B) and the cry1I families. To directly determine which genes were expressed and crystallized in the purified parasporal inclusions, solubilized and trypsinized HD-133 crystals were subjected to chromatographic separation by HPLC. Only three proteins, Cry1Ab, Cry1C, and Cry1D, were found, in a 60/37/3 ratio. Dot blot analysis of total mRNA purified from HD-133 showed that both thecry2B and cry1I genes, but not thecry1Aa gene, were transcribed. Cloning and sequencing of the cry1Aa gene revealed an inserted DNA sequence within the cry coding sequence, resulting in a disrupted reading frame. Taken together, our results show that combining crystal protein analysis with a genetic approach is a highly complementary and powerful way to assess the potential of B. thuringiensis isolates for new insecticidal genes and specificities. Furthermore, based on the number of cryptic genes found in HD-133, the total cry gene content of B. thuringiensis strains may be higher than previously thought.
A two-step strategy, named exclusive PCR or E-PCR, has been developed to overcome the main limitation of PCR, which is the detection of already-known sequences only. This strategy allows the ability to detect and further clone and sequence genes for which no specific primers are available and in which a variable region exists between two conserved regions. This approach has been applied to Bacillus thuringiensis cryI genes by the use of mixtures of degenerate and specific primers recognizing well-known sequences. The first step allows the accurate identification of already-characterized cryI genes by the use of three primers. During the second step, the same sets of primers are used to exclude known sequences and to positively detect cryI genes unrecognized by any specific primer. The method, as well as its application to detect, clone, and sequence a novel cryIB gene, is described in this article.
The operon containing the genes encoding the subunits of the binary crystal toxin of Bacillus sphaericus strain LP1-G, BinA and BinB (41.9 kDa and 51.4 kDa, respectively), was cloned and sequenced. Purified crystals were not toxic to Culex pipiens larvae. Comparison of the aminoacid sequences of this strain (Bin4) with those of the three other known toxin types (Bin1, Bin2 and Bin3) revealed mutations at six positions, including a serine at position 93 of BinA4, whereas all other types of BinA toxin from B. sphaericus had a leucine at this position. Reciprocal sitedirected mutagenesis was performed to replace this serine in BinA4 from LP1-G with a leucine and the leucine in the BinA2 protein from strain 1593 with a serine. Native and mutated genes were cloned and overexpressed. Inclusion bodies were tested on C. pipiens larvae. Unlike the native Bin4 toxin, the mutated protein was toxic, and the reciprocal mutation in Bin2 led to a significant loss of toxicity. In vitro receptor-binding studies showed similar binding behaviour for native and mutated toxins. In the absence of any experimental data on the 3D structure of these proteins, sequence analysis and secondary-structure predictions were performed. Amino acid 93 of the BinA polypeptide probably belongs to an a helix that is sensitive to amino-acid modifications. Position 93 may be a key element in the formation of the BinA±BinB complex responsible for the toxicity and stability of B. sphaericus Bin toxins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.