Search and rescue (SAR) operations can take significant advantage from supporting autonomous or teleoperated robots and multi-robot systems. These can aid in mapping and situational assessment, monitoring and surveillance, establishing communication networks, or searching for victims. This paper provides a review of multi-robot systems supporting SAR operations, with system-level considerations and focusing on the algorithmic perspectives for multi-robot coordination and perception. This is, to the best of our knowledge, the first survey paper to cover (i) heterogeneous SAR robots in different environments, (ii) active perception in multi-robot systems, while (iii) giving two complementary points of view from the multi-agent perception and control perspectives. We also discuss the most significant open research questions: shared autonomy, sim-to-real transferability of existing methods, awareness of victims' conditions, coordination and interoperability in heterogeneous multi-robot systems, and active perception. The different topics in the survey are put in the context of the different challenges and constraints that various types of robots (ground, aerial, surface, or underwater) encounter in different SAR environments (maritime, urban, wilderness, or other post-disaster scenarios). The objective of this survey is to serve as an entry point to the various aspects of multi-robot SAR systems to researchers in both the machine learning and control fields by giving a global overview of the main approaches being taken in the SAR robotics area.
Indoor mobile robots are widely used in industrial environments such as large logistic warehouses. They are often in charge of collecting or sorting products. For such robots, computation-intensive operations account for a significant percentage of the total energy consumption and consequently affect battery life. Besides, in order to keep both the power consumption and hardware complexity low, simple micro-controllers or single-board computers are used as onboard local control units. This limits the computational capabilities of robots and consequently their performance. Offloading heavy computation to Cloud servers has been a widely used approach to solve this problem for cases where large amounts of sensor data such as real-time video feeds need to be analyzed. More recently, Fog and Edge computing are being leveraged for offloading tasks such as image processing and complex navigation algorithms involving non-linear mathematical operations. In this paper, we present a system architecture for offloading computationally expensive localization and mapping tasks to smart Edge gateways which use Fog services. We show how Edge computing brings computational capabilities of the Cloud to the robot environment without compromising operational reliability due to connection issues. Furthermore, we analyze the power consumption of a prototype robot vehicle in different modes and show how battery life can be significantly improved by moving the processing of data to the Edge layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.