Hyperforin, a bicyclic polyprenylated acylphloroglucinol derivative, is the main active principle of St. John's wort extract responsible for its antidepressive profile. Hyperforin inhibits the neuronal serotonin and norepinephrine uptake comparable to synthetic antidepressants. In contrast to synthetic antidepressants directly blocking neuronal amine uptake, hyperforin increases synaptic serotonin and norepinephrine concentrations by an indirect and yet unknown mechanism. Our attempts to identify the molecular target of hyperforin resulted in the identification of TRPC6. Hyperforin induced sodium and calcium entry as well as currents in TRPC6-expressing cells. Sodium currents and the subsequent breakdown of the membrane sodium gradients may be the rationale for the inhibition of neuronal amine uptake. The hyperforin-induced cation entry was highly specific and related to TRPC6 and was suppressed in cells expressing a dominant negative mutant of TRPC6, whereas phylogenetically related channels, i.e., TRPC3 remained unaffected. Furthermore, hyperforin induces neuronal axonal sprouting like nerve growth factor in a TRPC6-dependent manner. These findings support the role of TRPC channels in neurite extension and identify hyperforin as the first selective pharmacological tool to study TRPC6 function. Hyperforin integrates inhibition of neurotransmitter uptake and neurotrophic property by specific activation of TRPC6 and represents an interesting lead-structure for a new class of antidepressants.
Mechano-electrical feedback was studied in the single ventricular myocytes. A small fraction (approximately 10%) of the cell surface could be stretched or compressed by a glass stylus. Stretch depolarised, shortened the action potential and induced extra systoles. Stretch activated non-selective cation currents (I(ns)) showed a linear voltage dependence, a reversal potential of 0 mV, a pure cation selectivity, and were blocked by 8 microM Gd(3+) or 30 microM streptomycin. Stretch reduced Ca(2+) and K(+) (I(K)) currents. Local compression of broadwise attached cells activated I(K) but not I(ns). Cytochalasin D or colchicin, thought to disrupt the cytoskeleton, suppressed the mechanosensitivity of I(ns) and I(K). During stretch, the cytosolic sodium concentration increased with spatial heterogeneities, local hotspots with [Na(+)](c)>24 mM appeared close to surface membrane and t-tubules (pseudoratiometric imaging using Sodium Green fluorescence). Electronprobe microanalysis confirmed this result and indicated that stretch increased total sodium [Na] in cell compartments such as mitochondria, nuclear envelope and nucleus. Our results obtained by local stretch differ from those obtained by end-to-end stretch (literature). We speculate that channels may be activated not only by axial but also by shear stress, and, that stretch can activate channels outside the deformed sarcomeres via second messenger.
ROS-induced hypercontracture is due to Ca(2+) entry via NCX which could be triggered by a concomitant substantial increase in [Na(+)](i). Elevated NCX levels predispose to ROS-induced injury, a mechanism likely contributing to myocyte dysfunction and death in heart failure.
Cellular calcium homeostasis is regulated by hormones and neurotransmitters, resulting in the activation of a variety of proteins, in particular, channel proteins of the plasma membrane and of intracellular compartments. Such channels are, for example, TRP channels of the TRPC protein family that are activated by various mediators from receptor-stimulated signaling cascades. In Drosophila, two TRPC channels, TRP and TRPL, are involved in phototransduction. In addition, a third Drosophila TRPC channel, TRP␥, has been identified and described as an auxiliary subunit of TRPL. Beyond it, our data show that heterologously expressed TRP␥ formed a receptor-activated, outwardly rectifying cation channel independent from TRPL coexpression. Analysis of the activation mechanism revealed that TRP␥ is activated by various polyunsaturated fatty acids generated in a phospholipase C-and phospholipase A 2 -dependent manner. The most potent activator of TRP␥, the stable analogue of arachidonic acid, 5,8,11,14-eicosatetraynoic acid, induced currents in single channel recordings. Here we show that upon heterologous expression TRP␥ forms a homomeric channel complex that is activated by polyunsaturated fatty acids as mediators of receptor-dependent signaling pathways. Reverse transcription PCR analysis showed that TRP␥ is expressed in Drosophila heads and bodies. Its body-wide expression pattern and its activation mechanism suggest that TRP␥ forms a fly cation channel responsible for the regulation of intracellular calcium in a variety of hormonal signaling cascades.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.