For a non-negative integer s and a finite simplicial complex K, let βS(K) denote the s-dimensional Betti number of K and let fs(K) denote the number of s-simplices of K. Our theorem, like Poincaré's, applies to combinatorial manifolds M, but it concerns the numbers fs(M) instead of the numbers βS(M). One of the formulae given below is used by the author in (5) to establish a sharp upper bound for the number of vertices of n-dimensional convex poly topes which have a given number i of (n — 1)-faces. This amounts to estimating the size of the computation problem which may be involved in solving a system of i linear inequalities in n variables, and was the original motivation for our study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.