It is shown that the modern development of pulp production technology is associated with the development of gas-liquid systems equipment. Such equipment provides the main technological processes of pulp cooking and regeneration of chemical reagents. Furthermore, this equipment, designed to recover chemical reagents and reduce their emissions into the environment, is part of the technological process. The use of scrubbers in pulp production has an advantage over many other industries, since it uses a closed liquor regeneration cycle. Currently, studies of the processes occurring in scrubbers of different types are becoming more numerous and fundamental. This paper is devoted to the development of jet scrubbers. These devices have a number of properties that do not have scrubbers of other types. They do not create resistance to the gas flow in the flue; they have a gravitational property due to ejection. Only jet scrubbers create the necessary conditions for the stability of the gas flow and have a jet effect that allows to significantly increase the efficiency of emissions cleaning. To implement the jet effect and intensify the technological equipment operation it is required to describe transfer processes in jet scrubbers with regard to polydisperse structure of drop flow and features of liquid splitting up into drops by centrifugal-jet nozzles. Scientific works devoted to the problem of realization of the jet effect showed the need to study the dynamics of liquid splitting in centrifugal-jet nozzles, which create a drop-filled jet with a large opening angle. The research purpose is to study the speed of the initial movement of drops in the area immediately after the splitting section of the continuous jet of liquid flowing from the nozzle. A photographic technique with two spark lamps was used for the experiment. At the same time, the distribution of irrigation density was controlled. The results of measuring the distributions of absolute speed of drops and irrigation density were compared with each other and the function of liquid speed distribution in the cross section of the gas-liquid jet of the jet scrubber was determined. Based on the obtained data, a theoretical model was developed to determine the initial speed of drops of centrifugal jet nozzles, an indicator required for the development of new jet scrubbers. The results can be applied to improve the technological processes of pulp production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.