We investigated the effects of electrostatic interactions on the rate constant (k(p)) for tension-induced pore formation in lipid membranes of giant unilamellar vesicles under constant applied tension. A decrease in salt concentration in solution as well as an increase in surface charge density of the membranes increased k(p). These data indicate that k(p) increases as the extent of electrostatic interaction increases. We developed a theory on the effect of the electrostatic interactions on the free energy profile of the membrane containing a prepore and also on the values of k(p); this theory explains the experimental results and fits the experimental data reasonably well in the presence of weak electrostatic interactions. Based on these results, we conclude that a decrease in the free energy barrier of the prepore state due to electrostatic interactions is the main factor causing an increase in k(p).
Antimicrobial peptide magainin 2 forms pores in lipid bilayers, a property that is considered the main cause of its bactericidal activity. Recent data suggest that tension or stretching of the inner monolayer plays an important role in magainin 2-induced pore formation in lipid bilayers. Here, to elucidate the mechanism of magainin 2-induced pore formation, we investigated the effect on pore formation of asymmetric lipid distribution in two monolayers. First, we developed a method to prepare giant unilamellar vesicles (GUVs) composed of dioleoylphosphatidylglycerol (DOPG), dioleoylphosphatidylcholine (DOPC), and lyso-PC (LPC) in the inner monolayer and of DOPG/DOPC in the outer monolayer. We consider that in these GUVs, the lipid packing in the inner monolayer was larger than that in the outer monolayer. Next, we investigated the interaction of magainin 2 with these GUVs with an asymmetric distribution of LPC using the single GUV method, and found that the rate constant of magainin 2-induced pore formation, k, decreased with increasing LPC concentration in the inner monolayer. We constructed a quantitative model of magainin 2-induced pore formation, whereby the binding of magainin 2 to the outer monolayer of a GUV induces stretching of the inner monolayer, causing pore formation. A theoretical equation defining k as a function of magainin 2 surface concentration, X, reasonably explains the experimental relationship between k and X. This model quantitatively explains the effect on k of the LPC concentration in the inner monolayer. On the basis of these results, we discuss the mechanism of the initial stage of magainin 2-induced pore formation.
The translocation of cell-penetrating peptides (CPPs) through plasma membranes of living cells is an important physiological phenomenon in biomembranes. To reveal the mechanism underlying the translocation of a CPP, transportan 10 (TP10), through lipid bilayers, we examined the effects of the mechanical properties of lipid bilayers on the entry of carboxyfluorescein (CF)-labeled TP10 (CF-TP10) into a giant unilamellar vesicle (GUV) using the single GUV method. First, we examined the effect of lateral tension in membranes on the entry of CF-TP10 into single GUVs comprising a mixture of dioleoylphosphatidylglycerol (DOPG) and dioleoylphosphatidylcholine (DOPC) (2/8). CF-TP10 entered the GUV lumen before the membrane permeation of Alexa Fluor 647 hydrazide (AF647) from the GUV and thus before pore formation in the membrane. The fraction of entry of CF-TP10 before pore formation and the rate of membrane rupture increased with tension. The CF-TP10-induced fractional change in the membrane area increased continuously with time until membrane rupture, but it increased more slowly than did the CF-TP10 concentration in the GUV membrane. A high mole fraction of cholesterol inhibited the entry of CF-TP10 into single GUVs by suppressing the translocation of CF-TP10 from the external to the internal monolayer, although higher concentrations of CF-TP10 induced the formation of pores through which CF-TP10 rapidly translocated. Suppression of the translocation of CF-TP10 by cholesterol can be reasonably explained by the large line tension of a prepore. We discussed the role of mechanical properties in membranes on the entry of CF-TP10 into single GUVs and proposed a hypothesis of the mechanism that CF-TP10 translocates across a bilayer through transient hydrophilic prepores in the membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.