Abstract:The cell case temperature versus time profiles of a multistage fast charging technique (4C-1C-constant voltage (CV))/fast discharge (4C) in a 2.3 Ah cylindrical lithium-ion cell are analyzed using a thermal model. Heat generation is dominated by the irreversible component associated with cell overpotential, although evidence of the reversible component is also observed, associated with the heat related to entropy from the electrode reactions. The final charging stages (i.e., 1C-CV) significantly reduce heat generation and cell temperature during charge, resulting in a thermally safe charging protocol. Cell heat capacity was determined from cell-specific heats and the cell materials' thickness. The model adjustment of the experimental data during the 2 min resting period between discharge and charge allowed us to calculate both the time constant of the relaxation process and the cell thermal resistance. The obtained values of these thermal parameters used in the proposed model are almost equal to those found in the literature for the same cell model, which suggests that the proposed model is suitable for its implementation in thermal management systems.
The emerging nickel-rich/silicon-graphite lithium-ion technology is showing a notable increase in the specific energy, a main requirement for portable devices and electric vehicles. These applications also demand short charging times, while actual charging methods for this technology imply long time or a significant reduction in cycling life. This study analyses the factors that affect the charge behavior for 18,650 commercial nickel-rich/silicon-graphite batteries. For that, long-term cycling tests have been carried out, including electric vehicle standard tests. It can be concluded that this technology has two key issues to develop an efficient charge method: high charge rates should be avoided, mainly below 15% state of charge, and the charge should be finished at 95% of actual cell capacity. This allows that, regardless of application and cell degradation level, cells can be recharged in 2 h without a negative impact on cycling life. For faster charge applications, a new method has been developed to minimize charging time without compromising the cycle life as much as the high current manufacturer method. The proposed fast charge method has proven to be notably faster, recharging in an average 1.3 h (48% less than the high current method and 68% less than the standard method).
Al cumplirse 15 años de la redacción del Documento de Aparecida, el autor repasa algunos de los puntos fundamentales en torno a la espiritualidad del discípulo-misionero. Esta espiritualidad debe estar inserta en la vida, integrar la contemplación con la acción social, estar unida a la misión y no descuidar su aspecto popular. Por último, hace una referencia a palabras del Papa Francisco en su visita a Río de Janeiro en 2013. El Documento de Aparecida sigue hoy resonando y tiene mucho que aportar a la vida de la Iglesia latinoamericana.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.