We develop the basic building blocks of a frequency domain framework for drawing statistical inferences on the second-order structure of a stationary sequence of functional data. The key element in such a context is the spectral density operator, which generalises the notion of a spectral density matrix to the functional setting, and characterises the second-order dynamics of the process. Our main tool is the functional Discrete Fourier Transform (fDFT). We derive an asymptotic Gaussian representation of the fDFT, thus allowing the transformation of the original collection of dependent random functions into a collection of approximately independent complex-valued Gaussian random functions. Our results are then employed in order to construct estimators of the spectral density operator based on smoothed versions of the periodogram kernel, the functional generalisation of the periodogram matrix. The consistency and asymptotic law of these estimators are studied in detail. As immediate consequences, we obtain central limit theorems for the mean and the long-run covariance operator of a stationary functional time series. Our results do not depend on structural modelling assumptions, but only functional versions of classical cumulant mixing conditions, and are shown to be stable under discrete observation of the individual curves.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1086 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
Wasserstein distances are metrics on probability distributions inspired by the problem of optimal mass transportation. Roughly speaking, they measure the minimal effort required to reconfigure the probability mass of one distribution in order to recover the other distribution. They are ubiquitous in mathematics, with a long history that has seen them catalyse core developments in analysis, optimization, and probability. Beyond their intrinsic mathematical richness, they possess attractive features that make them a versatile tool for the statistician: they can be used to derive weak convergence and convergence of moments, and can be easily bounded; they are well-adapted to quantify a natural notion of perturbation of a probability distribution; and they seamlessly incorporate the geometry of the domain of the distributions in question, thus being useful for contrasting complex objects. Consequently, they frequently appear in the development of statistical theory and inferential methodology, and have recently become an object of inference in themselves. In this review, we provide a snapshot of the main concepts involved in Wasserstein distances and optimal transportation, and a succinct overview of some of their many statistical aspects.
Given two samples of continuous zero-mean iid Gaussian processes on [0, 1], we consider the problem of testing whether they share the same covariance structure. Our study is motivated by the problem of determining whether the mechanical properties of short strands of DNA are significantly affected by their base-pair sequence; though expected to be true, had so far not been observed in three-dimensional electron microscopy data. The testing problem is seen to involve aspects of ill-posed inverse problems and a test based on a KarhunenLoève approximation of the Hilbert-Schmidt distance of the empirical covariance operators is proposed and investigated. When applied to a dataset of DNA minicircles obtained through the electron microscope, our test seems to suggest potential sequence effects on DNA shape. Supplemental material available online.
We develop a canonical framework for the study of the problem of registration of multiple point processes subjected to warping, known as the problem of separation of amplitude and phase variation. The amplitude variation of a real random function {Y (x) : x ∈ [0, 1]} corresponds to its random oscillations in the y-axis, typically encapsulated by its (co)variation around a mean level. In contrast, its phase variation refers to fluctuations in the x-axis, often caused by random time changes. We formalise similar notions for a point process, and nonparametrically separate them based on realisations of i.i.d. copies {Πi} of the phase-varying point process. A key element in our approach is to demonstrate that when the classical phase variation assumptions of Functional Data Analysis (FDA) are applied to the point process case, they become equivalent to conditions interpretable through the prism of the theory of optimal transportation of measure. We demonstrate that these induce a natural Wasserstein geometry tailored to the warping problem, including a formal notion of bias expressing over-registration. Within this framework, we construct nonparametric estimators that tend to avoid over-registration in finite samples. We show that they consistently estimate the warp maps, consistently estimate the structural mean, and consistently register the warped point processes, even in a sparse sampling regime. We also establish convergence rates, and derive √ n-consistency and a central limit theorem in the Cox process case under dense sampling, showing rate optimality of our structural mean estimator in that case.
We consider two statistical problems at the intersection of functional and non-Euclidean data analysis: the determination of a Fréchet mean in the Wasserstein space of multivariate distributions; and the optimal registration of deformed random measures and point processes. We elucidate how the two problems are linked, each being in a sense dual to the other. We first study the finite sample version of the problem in the continuum. Exploiting the tangent bundle structure of Wasserstein space, we deduce the Fréchet mean via gradient descent. We show that this is equivalent to a Procrustes analysis for the registration maps, thus only requiring successive solutions to pairwise optimal coupling problems. We then study the population version of the problem, focussing on inference and stability: in practice, the data are i.i.d. realisations from a law on Wasserstein space, and indeed their observation is discrete, where one observes a proxy finite sample or point process. We construct regularised nonparametric estimators, and prove their consistency for the population mean, and uniform consistency for the population Procrustes registration maps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.