In this work the two-photon activity of nanoparticles obtained from a fluorene monomer (M1) and its cross-conjugated polymer (P1) is reported. Aqueous suspensions of M1 and P1 nanoparticles prepared through the reprecipitation method exhibited maximum two-photon absorption (TPA) cross-sections of 84 and 9860 GM (1 GM = 10(-50) cm(4) s) at 740 nm, respectively, and a fluorescence quantum yield of ~1. Such a two-photon activity was practically equal with respect to that for molecular solutions of M1 and P1. These materials were then successfully encapsulated into silica nanoparticles to provide bio-compatibly. A lung cancer cell line (A549) and a human cervical cancer cell line (HeLa cells) were incubated with our fluorescent silica nanoparticles to carry out two-photon imaging. By means of these studies we demonstrate that optimized nonlinear optical polymers loaded in silica nanoparticles can be used as efficient probes with low cytotoxicity and good photostability for two-photon fluorescence microscopy. To the best of our knowledge, studies concerning polymer-doped silica nanoparticles exhibiting large two-photon activity have not been reported in the literature.
Background
Entamoeba histolytica, a protozoan parasite of humans, produces dysenteric diarrhea, intestinal mucosa damage and extraintestinal infection. It has been proposed that the intestinal microbiota composition could be an important regulatory factor of amebic virulence and tissue invasion, particularly if pathogenic bacteria are present. Recent in vitro studies have shown that Entamoeba histolytica trophozoites induced human colonic CaCo2 cells to synthesize TLR-2 and TLR-4 and proinflammatory cytokines after binding to the amebic Gal/GalNac lectin carbohydrate recognition domain. The magnitude of the inflammatory response induced by trophozoites and the subsequent cell damage were synergized when cells had previously been exposed to pathogenic bacteria.Methodology/Principal FindingsWe show here that E. histolytica activation of the classic TLR pathway in CaCo2 cells is required to induce β defensin-2 (HBD2) mRNA expression and production of a 5-kDa cationic peptide with similar properties to the antimicrobial HBD2 expressed by CaCo2 cells exposed to enterotoxigenic Escherichia coli. The induced peptide showed capacity to permeabilize membranes of bacteria and live trophozoites. This activity was abrogated by inhibition of TLR2/4-NFκB pathway or by neutralization with an anti-HBD2 antibody.Conclusions/Significance
Entamoeba histolytica trophozoites bind to human intestinal cells and induce expression of HBD2; an antimicrobial molecule with capacity to destroy pathogenic bacteria and trophozoites. HDB2's possible role as a modulator of the course of intestinal infections, particularly in mixed ameba/bacteria infections, is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.