Sour orange has been a premier citrus rootstock worldwide due to its ability to perform on challenging soils and to produce and hold high-quality fruit. However, increasingly widespread quick-decline isolates of citrus tristeza virus (CTV) have destroyed entire industries on sour orange in some countries, and are in the process of destroying millions of trees on sour orange in Florida. CTV also threatens other citrus locations planted heavy to sour orange, including Texas and Mexico. An acceptable alternative rootstock to replace sour orange is in high demand but has yet to be developed. Molecular analyses have recently determined that sour orange is probably a hybrid of pummelo and mandarin. We report the production of 12 new mandarin + pummelo somatic hybrids produced by protoplast fusion from selected superior mandarin and pummelo parents, in efforts to develop a suitable replacement sour-orange-like rootstock that is resistant to CTV-induced quick decline. Somatic hybrids from all 12 parental combinations were confirmed by a combination of leaf morphology, flow cytometry, and RAPD analyses (for nuclear hybridity). These new mandarin + pummelo somatic hybrids are being propagated by rooted cuttings as necessary to conduct quick-decline resistance assays and to assess horticultural performance in replicated field trials.
No presently available rootstock combines all the available rootstock attributes necessary for efficient long-term citriculture (production and harvesting) of Mexican limes and other commercially important scions. In the present study, somatic hybridization techniques were used to combine the widely adapted Amblycarpa mandarin (also known as Nasnaran mandarin) with six different trifoliate/trifoliate hybrid selections: Benton, Carrizo, and C-35 citranges; Flying Dragon and Rubidoux trifoliate oranges; and a somatic hybrid of sour orange + Flying Dragon. The ultimate goal of this research is to generate polyploid somatic hybrids that express the complementary horticultural and disease resistance attributes of the corresponding parents, and have direct potential as improved tree-size controlling rootstocks. Somatic hybrids from all six parental combinations were confirmed by a combination of leaf morphology, flow cytometry, and randomly amplified polymorphic DNA (RAPD) (for nuclear hybridity) and cleaved amplified polymorphic sequence (CAPS) analyses (for mtDNA and cpDNA). This is the first report of citrus somatic hybridization using Amblycarpa mandarin. Unexpected hexaploid somatic hybrid plants were recovered from the fusion of Amblycarpa mandarin + C-35 citrange. Hexaploid hybrids should be very dwarfing and may have potential for producing potted ornamental citrus. Resulting somatic hybrid plants from all six combinations have been propagated by tissue culture and/or rooted cuttings and are being prepared for commercial field evaluation for their potential as improved rootstocks for Mexican lime and other important scions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.