We investigate whether standard evolutionary robotics methods can be extended to support the evolution of multiple behaviors by forcing the retention of variations that are adaptive with respect to all required behaviors. This is realized by selecting the individuals located in the first Pareto fronts of the multidimensional fitness space in the case of a standard evolutionary algorithms and by computing and using multiple gradients of the expected fitness in the case of a modern evolutionary strategies that move the population in the direction of the gradient of the fitness. The results collected on two extended versions of state-of-the-art benchmarking problems indicate that the latter method permits to evolve robots capable of producing the required multiple behaviors in the majority of the replications and produces significantly better results than all the other methods considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.