In the present work, the near‐wake generated for a vertical axis wind turbine (VAWT) was simulated using an actuator line model (ALM) in order to validate and evaluate its accuracy. The sensitivity of the model to the variation of the spatial and temporal discretization was studied and showed a bigger response to the variation in the mesh size as compared with the temporal discretization. The large eddy simulation (LES) approach was used to predict the turbulence effects. The performance of Smagorinsky, dynamic k‐equation, and dynamic Lagrangian turbulence models was tested, showing very little relevant differences between them. Generally, predicted results agree well with experimental data for velocity and vorticity fields in representative sections. The presented ALM was able to characterize the main phenomena involved in the flow pattern using a relatively low computational cost without stability concerns, identified the general wake structure (qualitatively and quantitatively), and the contribution from the blade tips and motion on it. Additionally, the effects of the tower and struts were investigated with respect to the overall structure of the wake, showing no significant modification. Similarities and discrepancies between numerical and experimental results are discussed. The obtained results from the various simulations carried out here can be used as a practical reference guideline for choosing parameters in VAWTs simulations using the ALM.
A numerical study of both a horizontal axis wind turbine (HAWT) and a vertical axis wind turbine (VAWT) with similar size and power rating is presented. These large scale turbines have been tested when operating stand‐alone at their optimal tip speed ratio (TSR) within a neutrally stratified atmospheric boundary layer (ABL). The impact of three different surface roughness lengths on the turbine performance is studied for the both turbines. The turbines performance, the response to the variation in the surface roughness of terrain, and the most relevant phenomena involved on the resulting wake were investigated. The main goal was to evaluate the differences and similarities of these two different types of turbine when they operate under the same atmospheric flow conditions. An actuator line model (ALM) was used together with the large eddy simulation (LES) approach for predicting wake effects, and it was implemented using the open‐source computational fluid dynamics (CFD) library OpenFOAM to solve the governing equations and to compute the resulting flow fields. This model was first validated using wind tunnel measurements of power coefficients and wake of interacting HAWTs, and then employed to study the wake structure of both full scale turbines. A preliminary study test comparing the forces on a VAWT blades against measurements was also investigated. These obtained results showed a better performance and shorter wake (faster recovery) for an HAWT compared with a VAWT for the same atmospheric conditions.
This work presents a numerical study of the obtained performance and the resulting flow field between two interacting large scale vertical‐axis wind turbines (VAWTs), under the influence of a deflected wake through the struts pitching of the upwind turbine. The configuration consists of two VAWTs aligned in the direction of the incoming flow in which a wide range of fixed struts pitching angles in the upwind turbine have been investigated. The main goal is to evaluate the influence of the wake deflection on the turbines performance while they are operating at their optimal tip speed ratio (TSR), and to reproduce the most relevant phenomena involved in the flow pattern of the interacting wake. Arrangements with cross‐stream offsets have also been tested for quantifying the contribution of this modification into the overall performance. For this purpose, an actuator line model (ALM) has been implemented using the open‐source CFD library OpenFOAM in order to solve the governing equations and to calculate the resulting flow. The Large eddy simulation (LES) approach is considered to reproduce the turbulence flow effects. A preliminary study to identify the optimal TSR of the interacting downwind turbine has been investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.