Yellow rust (YR) or stripe rust, caused by Puccinia striformis f. sp tritici Eriks (Pst), is a major challenge to resistance breeding in wheat. A genome wide association study (GWAS) was performed using 22,415 single nucleotide polymorphism (SNP) markers and 591 haplotypes to identify genomic regions associated with resistance to YR in a subset panel of 419 pre-breeding lines (PBLs) developed at International Center for Maize and Wheat Improvement (CIMMYT). The 419 PBLs were derived from an initial set of 984 PBLs generated by a three-way crossing scheme (exotic/elite1//elite2) among 25 best elites and 244 exotics (synthetics, landraces) from CIMMYT’s germplasm bank. For the study, 419 PBLs were characterized with 22,415 high-quality DArTseq-SNPs and phenotyped for severity of YR disease at five locations in Mexico. A population structure was evident in the panel with three distinct subpopulations, and a genome-wide linkage disequilibrium (LD) decay of 2.5 cM was obtained. Across all five locations, 14 SNPs and 7 haplotype blocks were significantly (P < 0.001) associated with the disease severity explaining 6.0 to 14.1% and 7.9 to 19.9% of variation, respectively. Based on average LD decay of 2.5 cM, identified 14 SNP–trait associations were delimited to seven quantitative trait loci in total. Seven SNPs were part of the two haplotype blocks on chromosome 2A identified in haplotypes-based GWAS. In silico analysis of the identified SNPs showed hits with interesting candidate genes, which are related to pathogenic process or known to regulate induction of genes related to pathogenesis such as those coding for glunolactone oxidase, quinate O-hydroxycinnamoyl transferase, or two-component histidine kinase. The two-component histidine kinase, for example, acts as a sensor in the perception of phytohormones ethylene and cytokinin. Ethylene plays a very important role in regulation of multiple metabolic processes of plants, including induction of defense mechanisms mediated by jasmonate. The SNPs linked to the promising genes identified in the study can be used for marker-assisted selection.
A multiplex reverse transcription polymerase chain reaction (RT-PCR) assay was developed to simultaneously detect bean common mosaic virus (BCMV), bean common mosaic necrotic virus (BCMNV), and bean golden yellow mosaic virus (BGYMV) from common bean leaves dried with silica gel using a single total nucleic acid extraction cetyl trimethyl ammonium bromide (CTAB) method. A mixture of five specific primers was used to amplify three distinct fragments corresponding to 272 bp from the AC1 gene of BGYMV as well as 469 bp and 746 bp from the CP gene of BCMV and BCMNV, respectively. The three viruses were detected in a single plant or in a bulk of five plants. The multiplex RT-PCR was successfully applied to detect these three viruses from 187 field samples collected from 23 municipalities from the states of Guanajuato, Nayarit and Jalisco, Mexico. Rates of single infections were 14/187 (7.5%), 41/187 (21.9%), and 35/187 (18.7%), for BGYMV, BCMV, and BCMNV, respectively; 29/187 (15.5%) samples were co-infected with two of these viruses and 10/187 (5.3%) with the three viruses. This multiplex RT-PCR assay is a simple, rapid, sensitive, and cost-effective method for detecting these viruses in the common bean and can be used for routine molecular diagnosis and epidemiological studies.
Una de las principales limitantes para la producción de chile son los hongos patógenos causantes de la enfermedad conocida como “marchitez del chile” o “secadera”. Esta enfermedad puede ser devastadora cuando las condiciones climáticas son favorables para el patógeno. A pesar de que se han intentado diferentes medios de control (químicos y culturales) ninguno ha tenido éxito. Una alternativa para su control es producir germoplasma resistente, sin embargo para poder establecer un programa de mejoramiento efectivo es necesario conocer la distribución y diversidad genética de los patógenos involucrados, particularmente de Rhizoctonia solani, que por su ubicuidad representa un peligro potencial en todas las zonas productoras. Por ello el objetivo fue caracterizar a R. solani en las zona Centro Norte de México y determinar su diversidad genética. Para cumplir con este objetivo se consideraron los estados de Chihuahua, Durango, Zacatecas, San Luis Potosí, Colima, Querétaro y Guanajuato donde en 2009 se colectaron plantas adultas de Chile con síntomas de marchitez, se aisló al hongo y se encontró una incidencia del 33%, encontrándose tanto en tallo como en raíz. Las células miceliales fueron multinucleadas, características de las cepas patogénicas. Las pruebas de anastomosis demostaron la presencia en México de los grupos GA4, GA-2.1, GA-IIB, GA-2IV, GA7, GA11, GA12 y GA13. La diversidad genética de este hongo fue muy alta, de tal manera que las relaciones demostradas por la construcción de dendrogramas no muestran tendencias homogéneas pues los principales grupos formados contienen elementos de todos los estados.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.