We observe the appearance of Fano resonances in the optical response of plasmonic nanocavities due to the coherent coupling between their superradiant and subradiant plasmon modes. Two reduced-symmetry nanostructures probed via confocal spectroscopy, a dolmen-style slab arrangement and a ring/disk dimer, clearly exhibit the strong polarization and geometry dependence expected for this behavior at the individual nanostructure level, confirmed by full-field electrodynamic analysis of each structure. In each case, multiple Fano resonances occur as structure size is increased.
The microscopic mechanism of the matching effect in a superconductor, which manifested itself as the production of peaks or cusps in the critical current at specific values of the applied magnetic field, was investigated with Lorentz microscopy to allow direct observation of the behavior of vortices in a niobium thin film having a regular array of artificial defects. Vortices were observed to form regular and consequently rigid lattices at the matching magnetic field, at its multiples, and at its fractions. The dynamic observation furthermore revealed that vortices were most difficult to move at the matching field, whereas excess vortices moved easily.
Silicon dominates the electronics industry, but its poor optical properties mean that III-V compound semiconductors are preferred for photonics applications. Photoluminescence at visible wavelengths was observed from porous Si at room temperature in 1990, but the origin of these photons -highly-localized defect states or quantum confinement effects? -has been the subject of intense debate ever since. Since then attention has shifted from porous Si to Si nanocrystals, but the same fundamental question about the origin of the photoluminescence has remained. Here we show, based on measurements in high magnetic fields, that defects are the dominant source of light from Si nanocrystals. Moreover, we show that it is possible to control the origin of the photoluminescence in a single sample: passivation with hydrogen removes the defects, resulting in photoluminescence from quantum-confined states, but subsequent UV illumination reintroduces the defects, making them the origin of the light again.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.