The crystal structure of quintinite-2H-3c, [Mg4Al2(OH)12](CO3)(H2O)3, from the Kovdor alkaline massif, Kola peninsula, Russia, was solved by direct methods and refined to an agreement index (R1) of 0.055 for 484 unique reflections with |Fo| ≥ 4σF. The mineral is rhombohedral, R32, a = 5.2745(7), c = 45.36(1) Å. The diffraction pattern of the crystal has strong and sharp Bragg reflections having h–k = 3n and l = 3n and lines of weak superstructure reflections extended parallel to c* and centred at h–k ≠ 3n. The structure contains six layers within the unit cell with the layer stacking sequence of …AC=CA=AC=CA=AC=CA… The Mg and Al atoms are ordered in metal hydroxide layers to form a honeycomb superstructure. The full superstructure is formed by the combination of two-layer stacking sequence and Mg-Al ordering. This is the first time that a long-range superstructure in carbonate-bearing layered double hydroxide (LDH) has been observed. Taking into account Mg-Al ordering, the unique layer sequence can be written as …=Ab1C=Cb1A=Ab2C=Cb2A=Ab3C=Cb3A=… The use of an additional suffix is proposed in order to distinguish between LDH polytypes having the same general stacking sequence but with different c parameters compared with the ‘standard’ polytype. According to this notation, the quintinite studied here can be described as quintinite-2H-3c or quintinite-2H-3c[6R], indicating the real symmetry.
The Kovdor baddeleyite-apatite-magnetite deposit in the Kovdor phoscorite-carbonatite pipe is situated in the western part of the zoned alkali-ultrabasic Kovdor intrusion (NW part of the Fennoscandinavian shield; Murmansk Region, Russia). We describe major intrusive and metasomatic rocks of the pipe and its surroundings using a new classification of phoscorite-carbonatite series rocks, consistent with the IUGS recommendation. The gradual zonation of the pipe corresponds to the sequence of mineral crystallization (forsterite-hydroxylapatite-magnetite-calcite). Crystal morphology, grain size, characteristic inclusions, and composition of the rock-forming and accessory minerals display the same spatial zonation pattern, as do the three minerals of economic interest, i.e. magnetite, hydroxylapatite, and baddeleyite. The content of Sr, rare earth elements (REEs), and Ba in hydroxylapatite tends to increase gradually at the expense of Si, Fe, and Mg from early apatite-forsterite phoscorite (margins of the pipe) through carbonate-free, magnetite-rich phoscorite to carbonate-rich phoscorite and phoscorite-related carbonatite (inner part). Magnetite displays a trend of increasing V and Ca and decreasing Ti, Mn, Si, Cr, Sc, and Zn from the margins to the central part of the pipe; its grain size initially increases from the wall rocks to the inner part and then decreases towards the central part; characteristic inclusions in magnetite are geikielite within the marginal zone of the phoscoritecarbonatite pipe, spinel within the intermediate zone, and ilmenite within the inner zone. The zoning pattern seems to have formed due to both cooling and rapid degassing (pressure drop) of a fluid-rich magmatic column and subsequent pneumatolytic and hydrothermal processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.