This study examines the improvement in Coupled Model Intercomparison Project Phase Six (CMIP6) models against the predecessor CMIP5 in simulating mean and extreme precipitation over the East Africa region. The study compares the climatology of the precipitation indices simulated by the CMIP models with the CHIRPS data set using robust statistical techniques for 1981-2005. The results display the varying performance of the general circulation models (GCMs) in the simulation of annual and seasonal precipitation climatology over the study domain. CMIP6 multi-model ensemble mean (hereafter MME) shows improved performance in the local annual mean cycle simulation with a better representation of the rainfall within the two peaks, especially the MAM rainfall relative to their predecessor. Moreover, simulation of extreme indices is well captured in CMIP6 models relative to CMIP5. The CMIP6-MME performed better than the CMIP5-MME with lesser biases in simulating Simple Daily Intensity Index (SDII), consecutive dry days (CDD), and very heavy precipitation days >20 mm (R20mm) over East Africa. Remarkably, most CMIP6 models are unable to simulate extremely wet days (R95p). Some CMIP6 models (e.g., NorESM2-MM and CNRM-CM6-1) depict robust performance in reproducing the observed indices across all analyses. OND season shows wet biases for some indices (i.e., R95p, PRCPTOT), except for SDII, CDD, and R20mm in CMIP6 models. Consistent with other studies, the mean ensemble performance for both CMIP5/6 shows better performance as compared with individual models due to the cancellation of some systematic errors in the
The present precipitation and temperature patterns and expected future changes (2073–2098) in Africa are investigated using the Hadley Centre Global Environmental Model 2‐Earth System (HadGEM2‐ES) under the fifth phase of the Coupled Model Intercomparison Project (CMIP5) protocols for historical and future emission scenarios simulations. In a CMIP5 multimodel analysis, the annual cycles of temperature and precipitation simulated by HadGEM2‐ES were very close to the multimodel ensemble mean. HadGEM2‐ES temperature simulation compares well with the National Center for Atmospheric Research (NCAR) reanalysis over the 1979–2004 periods, except for a summer overestimation in Central Africa, and a winter underestimation in tropical West Africa. The precipitation simulation compared well with the Global Precipitation Climatology Project (GPCP) data from 1979 to 2004 over the entire Africa, except in the Intertropical Convergence Zone (ITCZ), where the model fails to capture adequately the transition phase of the monsoon circulation. The dry regimes over Northern Africa as well as the wetter regime occurring over Central Africa, which is mainly regulated by the ITCZ displacement, and during the austral summer of Southern Africa, are also fairly reproduced by the HadGEM2‐ES model. The model projects for the end of the 21st century a rainy South Africa, a change of the flood/drought cycle in the Tropics and a warming over the whole continent, varying from 3 to 7 °C. HadGEM2‐ES performance for Nigeria shows good reproduction of precipitation seasonal cycles for some locations, outside the ITCZ. However, the comparison with in situ measurement in Ilorin and Lagos shows the model is not being able to reproduce the precipitation annual cycle. Future projections for Nigeria exhibit warming everywhere and an enhancement of precipitation, especially in the northern part of the country.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.