During the southern summer season of 2015 and 2016, South Africa experienced one of the most severe meteorological droughts since the start of climate recording, due to an exceptionally strong El Niño event. To investigate spatiotemporal dynamics of surface moisture and vegetation structure, data from ESA’s Copernicus Sentinel-1/-2 and NASA’s Landsat-8 for the period between March 2015 and November 2017 were utilized. In combination, these radar and optical satellite systems provide promising data with high spatial and temporal resolution. Sentinel-1 C-band data was exploited to derive surface moisture based on a hyper-temporal co-polarized (vertical-vertical—VV) radar backscatter change detection approach, describing dynamics between dry and wet seasons. Vegetation information from a TLS (Terrestrial Laser Scanner)-derived canopy height model (CHM), as well as the normalized difference vegetation index (NDVI) from Sentinel-2 and Landsat-8, were utilized to analyze vegetation structure types and dynamics with respect to the surface moisture index (SurfMI). Our results indicate that our combined radar–optical approach allows for a separation and retrieval of surface moisture conditions suitable for drought monitoring. Moreover, we conclude that it is crucial for the development of a drought monitoring system for savanna ecosystems to integrate land cover and vegetation information for analyzing surface moisture dynamics derived from Earth observation time series.
Abstract:The use of optical remote sensing data for savanna vegetation structure mapping is hindered by sparse and heterogeneous distribution of vegetation canopy, leading to near-similar spectral signatures among lifeforms. An additional challenge to optical sensors is the high cloud cover and unpredictable weather conditions. Longwave microwave data, with its low sensitivity to clouds addresses some of these problems, but many space borne studies are still limited by low quality structural reference data. Terrestrial laser scanning (TLS) derived canopy cover and height metrics can improve aboveground biomass (AGB) prediction at both plot and landscape level. To date, few studies have explored the strength of TLS for vegetation structural mapping, and particularly few focusing on savannas. In this study, we evaluate the potential of high resolution TLS-derived canopy cover and height metrics to estimate plot-level aboveground biomass, and to extrapolate to a landscape-wide biomass estimation using multi-temporal L-band Synthetic Aperture Radar (SAR) within a 9 km 2 area savanna in Kruger National Park (KNP). We inventoried 42 field plots in the wet season and computed AGB for each plot using site-specific allometry. Canopy cover, canopy height, and their product were regressed with plot-level AGB over the TLS-footprint, while SAR backscatter was used to model dry season biomass for the years 2007, 2008, 2009, and 2010 for the study area. The results from model validation showed a significant linear relationship between TLS-derived predictors with field biomass, p < 0.05 and adjusted R 2 ranging between 0.56 for SAR to 0.93 for the TLS-derived canopy cover and height. Log-transformed AGB yielded lower errors with TLS metrics compared with non-transformed AGB. An assessment of the backscatter based on root mean square error (RMSE) showed better AGB prediction with cross-polarized (RMSE = 6.6 t/ha) as opposed to co-polarized data (RMSE = 6.7 t/ha), attributed to volume scattering of woody vegetation along river valleys and streams. The AGB change analysis showed 32 ha (3.5%) of the 900 ha experienced AGB loses above an average of 5 t/ha per annum, which can mainly be attributed to the falling of trees by mega herbivores such as elephants. The study concludes that SAR data, especially L-band SAR, can be used in the detection of small changes in savanna vegetation over time.
Southern Africa is particularly sensitive to climate change, due to both ecological and socioeconomic factors, with rural land users among the most vulnerable groups. The provision of information to support climate-relevant decision-making requires an understanding of the projected impacts of change and complex feedbacks within the local ecosystems, as well as local demands on ecosystem services. In this paper, we address the limitation of current approaches for developing management relevant socio-ecological information on the projected impacts of climate change and human activities. We emphasise the need for linking disciplines and approaches by expounding the methodology followed in our two consecutive projects. These projects combine disciplines and levels of measurements from the leaf level (ecophysiology) to the local landscape level (flux measurements) and from the local household level (socio-economic surveys) to the regional level (remote sensing), feeding into a variety of models at multiple scales. Interdisciplinary, multi-scaled, and integrated socio-ecological approaches, as proposed here, are needed to compliment reductionist and linear, scalespecific approaches. Decision support systems are used to integrate and communicate the data and models to the local decision-makers.Observed temperature increases over large parts of South Africa during the period 1931-2015 have occurred at rates of about twice the global mean, and this trend is projected to continue into the future (DEA 2017). Other projections across Southern Africa include changes in rainfall amount, variability, intensity and seasonality, and increases in the likelihood of extreme
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.