Germanium is listed as a critical raw material, and for environmental and economic sustainability reasons, strategies for lower consumption must be implemented. A promising approach is Ge lift‐off concepts, which enable to re‐use the substrate multiple times. Our concept is based on the Ge‐on‐Nothing approach that is the controlled restructuring at high temperature of a macroporous Ge surface, forming a Ge foil weakly attached to its parent wafer. Its suitability as III–V epitaxy seed and support substrate has previously been demonstrated with proof‐of‐concept solar cells. This work focuses on bringing this concept to the next level, by upscaling the detachable area to a full 200‐mm wafer scale, increasing foil thickness for sufficient light absorption in the Ge bottom cell, and improving the control on the strength that is bonding the suspended foil to its parent. By introducing a new high growth‐rate epitaxy process from GeCl4, and by engineering the GeON structure to introduce pillars with ad hoc density and shape, we fabricated P‐type foils with tunable boron doping up to 15 μm in thickness and 11 cm × 11 cm in area, for which the detachment strength could be adapted to the stresses induced by the solar cell process steps. The surface roughness and the electrical and crystal qualities of these foils were inspected by AFM, SIMS, SRP, ECCI, and TEM to check the GeCl4‐based epitaxy conditions and to check that the ad hoc pillars were not introducing any damage. Small‐area triple‐junction lattice‐matched GaInP/GaInAs/Ge solar cells were fabricated on 7‐μm‐thick Ge foils with various pillar densities and on a standard reference Ge wafer. The III–V layer nucleation was virtually the same on both substrates and the solar cells on the GeON foils performed in the same way as the cells on the Ge wafer, albeit a small loss in short‐circuit current and open‐circuit voltage that can be attributed to the thickness reduction and absence of rear‐side passivation. We conclude that it is possible to gain control on the GeON detachability and upscale the concept to areas relevant for the space PV industry, proving that porous germanium is a serious candidate for replacement of bulk Ge wafers in view of a more sustainable multijunction solar cell process.
Virtual Ge substrates fabricated by direct deposition of Ge on Si have become a pathway with high potential to attain high-efficiency III-V multijunction solar cells on Si. We study the development of III-V triple junction solar cells using two types of Ge|Si virtual substrates. The first uses a thick (2-5 μm) Ge layer grown by CVD, which acts as the bottom Ge subcell. The second, grown by low-temperature RT-PECVD, has a thickness of a few tens of nanometres, with the Si substrate acting as Si bottom cell. We discuss the challenges related to each design (formation of cracks, parasitic absorption in the Ge layer, dislocations, ...), present the theoretical design and show the experimental results obtained. Finally, an advanced approach using embedded porous Si layers as buffer layers for crack mitigation is also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.