Plasma membrane voltage-sensitive ion channels classically have been associated with a variety of inherited diseases or "channelopathies" that range in the severity of symptoms from mild to lethal. Ion channels are found throughout the body and are responsible for facilitated diffusion of ions down the electrochemical gradient across cells membranes in various tissues. Voltage-sensitive ion channels open in response to changes in the membrane potential and are primarily found in excitable cells and tissues. Potassium, calcium, and sodium channels play critical roles in the development of major diseases, such as hyperkalemia, epilepsy, congenital myotonia and several cardiac arrythmias. Recently, cancer studies have begun to define the role of voltage-sensitive ion channels in the progression of cancer to a more malignant phenotype. In cancer, the increased expression or increased kinetics of voltage-sensitive ion channels is associated with an increasing malignant potential as evinced by their role in cell proliferation, migration and survival; as such, these channels are becoming the targets of significant drug development efforts to block or reduce voltage-sensitive ion channel activity in order to prevent or combat malignant disease.
Deletion of the highly conserved gene for the major Ca2+ efflux pump, Plasma membrane calcium/calmodulin-dependent ATPase 4b (Pmca4b), in the mouse leads to loss of progressive and hyperactivated sperm motility and infertility. Here we first demonstrate that compared to wild-type (WT), Junctional adhesion molecule-A (Jam-A) null sperm, previously shown to have motility defects and an abnormal mitochondrial phenotype reminiscent of that seen in Pmca4b nulls, exhibit reduced (P<0.001) ATP levels, significantly (P<0.001) greater cytosolic Ca2+ concentration ([Ca2+]c) and ~10-fold higher mitochondrial sequestration, indicating Ca2+ overload. Investigating the mechanism involved, we used coimmunoprecipitation studies to show that CASK (Ca2+/calmodulin-dependent serine kinase), identified for the first time on the sperm flagellum where it co-localizes with both PMCA4b and JAM-A on the proximal principal piece, acts as a common interacting partner of both. Importantly, CASK binds alternatively and non-synergistically with each of these molecules via its single PDZ (PDS-95/Dlg/ZO-1) domain to either inhibit or promote efflux. In the absence of CASK-JAM-A interaction in Jam-A null sperm, CASK-PMCA4b interaction is increased, resulting in inhibition of PMCA4b’s enzymatic activity, consequent Ca2+ accumulation, and a ~6-fold over-expression of constitutively ATP-utilizing CASK, compared to WT. Thus, CASK negatively regulates PMCA4b by directly binding to it and JAM-A positively regulates it indirectly through CASK. The decreased motility is likely due to the collateral net deficit in ATP observed in nulls. Our data indicate that Ca2+ homeostasis in sperm is maintained by the relative ratios of CASK-PMCA4b and CASK-JAM-A interactions.
To study the effects of hydrogen peroxide, pig coronary artery smooth muscle subcellular fractions enriched in plasma membrane (F2) or sarcoplasmic reticulum (F3) were incubated in various concentrations of peroxide and 5 mM azide. ATP-dependent azide-insensitive oxalate-stimulated Ca2+ uptake was determined for F3 and phosphate-stimulated uptake for F2. Only 1.5-5 microM hydrogen peroxide was required for 50% inhibition of the Ca2+ uptake by F3, but the corresponding concentration for F2 was 10-50 microM. This effect was not prevented by superoxide dismutase. Hydrogen peroxide inhibited the Ca(2+)-dependent formation of a 115-kDa acylphosphate band in F3 and 140- and 115-kDa bands in F2. The inhibition of Ca2+ uptake in F3, however, exceeded the inhibition of the acylphosphate formation. Efflux of Ca2+ from F2 and F3 was enhanced by hydrogen peroxide but F3 was more sensitive than F2. We conclude that hydrogen peroxide has dual effect on Ca2+ dynamics in the coronary artery smooth muscle, i.e., it inactivates the Ca2+ pumps and increases membrane permeability to Ca2+. The effect is more pronounced on sarcoplasmic reticulum than on plasma membrane. Intrinsic catalase may, however, provide partial protection against such damage.
The sarcoplasmic reticulum (SR) Ca2+ pump in membranes isolated from arterial smooth muscle is damaged by reactive oxygen species (ROS). Because angiotensin II (ANG II) contracts arterial smooth muscle by mobilizing intracellular Ca2+ concentrations ([Ca2+])i, we determined the effects of ROS pretreatment on ANG II-induced contractions in coronary artery rings and [Ca2+]i transients in smooth muscle cells (SMC) cultured from them. This experimental design eliminates direct ROS interference in assay solutions, thus monitoring only the tissue damage. Pretreating the arteries with peroxide inhibited the ANG II contractions with the concentration for half-maximal activation (K0.5) = 74 +/- 5 microM. Peroxide (250 microM) inhibited the contractions to ANG II and cyclopiazonic acid (CPA, SR Ca(2+)-pump inhibitor) by 78.3 +/- 5.1 and 67.4 +/- 6.3%, respectively, but did not significantly affect the contractions by 60 mM KCl. Pretreating SMC with peroxide inhibited the ANG II-induced increase in [Ca2+]i with K0.5 = 24 +/- 3 microM for peroxide. Peroxide (100 microM) inhibited the increase in [Ca2+]i in response to ANG II and CPA by 78.9 +/- 5.1 and 38.3 +/- 4.9%, respectively. The SR Ca(2+)-pump activity was also measured as the Ca(2+)-dependent formation of 115-kDa acylphosphate. Pretreating SMC with 100 microM peroxide inhibited the acylphosphate levels by 36.3 +/- 3.2%. Peroxide (100 microM) pretreatment of SMC did not significantly affect their ANG II binding.(ABSTRACT TRUNCATED AT 250 WORDS)
Although it is well known that progesterone alters uterine contractility and plays an important role in maintenance of pregnancy, the biochemical mechanisms by which progesterone alters uterine contractility in human gestation are less clear. In this investigation we sought to identify progesterone-induced adaptations in human myometrial smooth muscle cells that may alter Ca2+signaling in response to contractile agents. Cells were treated with vehicle or the progesterone analog medroxyprogesterone acetate (MPA) for 5 days, and intracellular free Ca2+ concentration ([Ca2+]i) was quantified after treatment with oxytocin (OX) or endothelin (ET)-1. OX- and ET-1-induced increases in [Ca2+]iwere significantly attenuated in cells pretreated with MPA in a dose-dependent manner. Progesterone receptor antagonists prevented the attenuated Ca2+ transients induced by MPA. ETA and ETB receptor subtypes were expressed in myometrial cells, and treatment with MPA resulted in significant downregulation of ETAand ETB receptor binding. MPA did not alter ionomycin-stimulated increases in [Ca2+]iand had no effect on inositol trisphosphate-dependent or -independent release of Ca2+ from internal Ca2+ stores. We conclude that adaptations of Ca2+ homeostasis in myometrial cells during pregnancy may include progesterone-induced modification of receptor-mediated increases in [Ca2+]i.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.