The Event Horizon Telescope (EHT) is a project to assemble a Very Long Baseline Interferometry (VLBI) network of mm wavelength dishes that can resolve strong field General Relativistic signatures near a supermassive black hole. As planned, the EHT will include enough dishes to enable imaging of the predicted black hole "shadow", a feature caused by severe light bending at the black hole boundary. The center of M87, a giant elliptical galaxy, presents one of the most interesting EHT targets as it exhibits a relativistic jet, offering the additional possibility of studying jet genesis on Schwarzschild radius scales. Fully relativistic models of the M87 jet that fit all existing observational constraints now allow horizon-scale images to be generated. We perform realistic VLBI simulations of M87 model images to examine detectability of the black shadow with the EHT, focusing on a sequence of model images with a changing jet mass load radius. When the jet is launched close to the black hole, the shadow is clearly visible both at 230 and 345 GHz. The EHT array with a resolution of 20-30µas resolution (∼2-4 Schwarzschild radii) is able to image this feature independent of any theoretical models and we show that imaging methods used to process data from optical interferometers are applicable and effective for EHT data sets. We demonstrate that the EHT is also capable of tracing real-time structural changes on a few Schwarzschild radii scales, such as those implicated by VHE flaring activity of M87. While inclusion of ALMA in the EHT is critical for shadow imaging, generally the array is robust against loss of a station.
The Atacama Millimeter/submillimeter Array (ALMA) Phasing Project (APP) has developed and deployed the hardware and software necessary to coherently sum the signals of individual ALMA antennas and record the aggregate sum in Very Long Baseline Interferometry (VLBI) Data Exchange Format. These beamforming capabilities allow the ALMA array to collectively function as the equivalent of a single large aperture and participate in global VLBI arrays. The inclusion of phased ALMA in current VLBI networks operating at (sub)millimeter wavelengths provides an order of magnitude improvement in sensitivity, as well as enhancements in u-v coverage and north-south angular resolution. The availability of a phased ALMA enables a wide range of new ultra-high angular resolution science applications, including the resolution of supermassive black holes on event horizon scales and studies of the launch and collimation of astrophysical jets. It also provides a high-sensitivity aperture that may be used for investigations such as pulsar searches at high frequencies. This paper provides an overview of the ALMA Phasing System design, implementation, and performance characteristics.1 The maximum is set by the design of the ALMA BL correlator (Section 4.2) and the practice of designating at least two antennas unphased comparison antennas (Section 5.2.1). 2 The anticipated number of antennas available for phasing during ALMA Cycle 5 is ∼37. 3 The APS was commissioned for use in ALMA Bands 3 and 6. However, it is capable of operation in any band provided that weather conditions are suitable. 4 The maximum recording rate available at ALMA's VLBI partner sites during ALMA Cycle 4 was 2 Gbps for the GMVA and 32 Gbps for the EHT. In Cycle 5, this rate is expected to increase to 64 Gbps for the EHT sites. 5 The system equivalent flux density (SEFD) for Band 3 assumes an aperture efficiency of 0.71 and a typical zenith system temperature of 70 K; for Band 6, the SEFD assumes an aperture efficiency of 0.68, and a zenith system temperature of 100 K. 6 See Section 8.2 for discussion. 7 Improvements in the handling of delays (Section 5.2.4) will enable direct phase-up on weaker sources, while a future passive phasing mode (Section 9) will enable VLBI on weaker sources.
The image of the emission surrounding the black hole in the center of the Milky Way is predicted to exhibit the imprint of general relativistic (GR) effects, including the existence of a shadow feature and a photon ring of diameter ∼50 µas. Structure on these scales can be resolved by millimeter-wavelength very long baseline interferometry (VLBI). However, strong-field GR features of interest will be blurred at λ ≥ 1.3 mm due to scattering by interstellar electrons. The scattering properties are well understood over most of the relevant range of baseline lengths, suggesting that the scattering may be (mostly) invertible. We simulate observations of a model image of Sgr A* and demonstrate that the effects of scattering can indeed be mitigated by correcting the visibilities before reconstructing the image. This technique is also applicable to Sgr A* at longer wavelengths.
A research agenda for intelligent systems that will result in fundamental new capabilities for understanding the Earth system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.