Being trajectory tracking key for safe mobile robot navigation, Fuzzy Logic (FL) has been useful in tackling uncertainty and imprecision to realize robust and smooth trajectory tracking. In this paper, we present the Z-number based Fuzzy Logic control for trajectory tracking of differential wheeled mobile robots. The unique point of our approach lies in the ability to encode constraint and reliability in multi-input and multi-output rules, whose antecedent universe considers only the instantaneous measurements of distance and the orientation gaps, and whose consequent universe is computed by the interpolative reasoning and the graded mean integration approach. As a consequence, not only our approach avoids the complexity of encoding error gradients, but also is advantageous to model versatile control rules able to cope with missing observations and noisy inducements on actuators. Our experiments using both physics-based simulations and real-world tests based on a Pioneer 3DX robot architecture have elucidated the superior efficacy and the feasibility of the proposed controller regarding accuracy, robustness, and smoothness compared to other well-known related frameworks such as Fuzzy Logic Type 1, Fuzzy Logic Type 2 and Fuzzy Logic with PID. Our results provide unique insights to realize generalizable algorithms aided by FL and Z-number towards robust trajectory tracking.
Global financial development have opened innumerable risks and opportunities for investments. A global view of the portfolio allocation through diversification brings advantages for the risk allocation in investments. In this paper, an asset allocation framework under the return, risk and liquidity considerations is proposed for short term investment using Genetic Relation Algorithm. Simulations using the stocks, bonds and currencies from relevant financial markets in USA, Europe and Asia show that the proposed framework is effective and robust. The efficacy of the proposed method is compared against the relevant constructs in finance and computational fields.
Mobile robots have recently attracted the attention and applicability in field areas ubiquitously. Within the context of autonomous navigation, path planning is relevant for comfortability, safety, execution time and energy savings. In this paper, we propose an approach to suggest smooth paths from observed robot trajectories by optimizing fitting and smoothness criteria using Differential Evolution with distinct modes of initialization, selection pressure, exploration and exploitation. Our rigorous computational experiments using a relevant set of real-world robot trajectories from the Boe-Bot mobile robot architecture show the feasibility and efficiency of our approach in computing smooth curves, suggesting the superior performance of the greedy initialization scheme based on the triangular convex hull of the robot trajectory, and Differential Evolution with exploitative and parameter adaptation schemes such as Rank-Based Differential Evolution (RBDE), Adaptive Differential Evolution with External Archive (JADE) and Strategy Adaptation Differential Evolution (SADE). Our obtained results offer the building blocks to further advance towards developing data-driven curve fitting and path planning algorithms, which may find use in several real-world applications in Robotics and Operations Research.
Elucidating versatile configurations of spiral folding, and investigating the deployment performance is of relevant interest to extend the applicability of deployable membranes towards large-scale and functional configurations. In this paper we propose new schemes to package flat and curved membranes of finite thickness by using multiple spirals, whose governing equations render folding lines by juxtaposing spirals and by accommodating membrane thickness. Our experiments using a set of topologically distinct flat and curved membranes deployed by tensile forces applied in the radial and circumferential directions have shown that (1) the multi-spiral approach with prismatic folding lines offered the improved deployment performance, and (2) the deployment of curved surfaces progresses rapidly within a finite load domain. Furthermore, we confirmed the high efficiency of membranes folded by multi-spiral patterns. From viewpoints of configuration and deployment performance, the multispiral approach is potential to extend the versatility and maneuverability of spiral folding mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.