Flowering times of plants are important life-history components and it has previously been hypothesized that flowering phenologies may be currently subject to natural selection or be selectively neutral. In this study we reviewed the evidence for phenotypic selection acting on flowering phenology using ordinary and phylogenetic meta-analysis. Phenotypic selection exists when a phenotypic trait co-varies with fitness; therefore, we looked for studies reporting an association between two components of flowering phenology (flowering time or flowering synchrony) with fitness. Data sets comprising 87 and 18 plant species were then used to assess the incidence and strength of phenotypic selection on flowering time and flowering synchrony, respectively. The influence of dependence on pollinators, the duration of the reproductive event, latitude and plant longevity as moderators of selection were also explored. Our results suggest that selection favours early flowering plants, but the strength of selection is influenced by latitude, with selection being stronger in temperate environments. However, there is no consistent pattern of selection on flowering synchrony. Our study demonstrates that phenotypic selection on flowering time is consistent and relatively strong, in contrast to previous hypotheses of selective neutrality, and has implications for the evolution of temperate floras under global climate change.
Our results give important insights into the potential drivers of among- and within-species variation in HP receipt. They also highlight the value of explorations of patterns at the intraspecific level, which can ultimately shed light on plant-pollinator-mediated selection in diverse plant communities.
Despite increasing evidence that plant intra- and inter-specific diversity increases primary productivity, and that such effect may in turn cascade up to influence herbivores, there is little information about plant diversity effects on plant anti-herbivore defenses, the relative importance of different sources of plant diversity, and the mechanisms for such effects. For example, increased plant growth at high diversity may lead to reduced investment in defenses via growth-defense trade-offs. Alternatively, positive effects of plant diversity on plant growth may lead to increased herbivore abundance which in turn leads to a greater investment in plant defenses. The magnitude of trait variation underlying diversity effects is usually greater among species than among genotypes within a given species, so plant species diversity effects on resource use by producers as well as on higher trophic levels should be stronger than genotypic diversity effects. Here we compared the relative importance of plant genotypic and species diversity on anti-herbivore defenses and whether such effects are mediated indirectly via diversity effects on plant growth and/or herbivore damage. To this end, we performed a large-scale field experiment where we manipulated genotypic diversity of big-leaf mahogany (Swietenia macrophylla) and tree species diversity, and measured effects on mahogany growth, damage by the stem-boring specialist caterpillar Hypsipyla grandella, and defensive traits (polyphenolics and condensed tannins in stem and leaves). We found that both forms of plant diversity had positive effects on stem (but not leaf) defenses. However, neither source of diversity influenced mahogany growth, and diversity effects on defenses were not mediated by either growth-defense trade-offs or changes in stem-borer damage. Although the mechanism(s) of diversity effects on plant defenses are yet to be determined, our study is one of the few to test for and show producer diversity effects on plant chemical defenses.
The richness and seasonal variation of ant‐plant interactions were compared in four habitats in México: lowland tropical dry forest (La Mancha, Veracruz), coastal sand dune matorral (San Benito, Yucatán), semiarid highland vegetation (Zapotitlán, Puebla), and lower montane humid forest (Xalapa, Veracruz). The effects of temperature and precipitation on the seasonal distribution of the number of ant‐plant interactions differed among habitats. The general linear models fitted to the ant‐plant interaction curves explained 78.8 percent of the variation for La Mancha, 80.1 percent for Zapotitlán, 18 percent for San Benito, and 29.5 percent for Xalapa. Even though rainfall is low in Zapotitlán and San Benito, minimum temperature was the most important factor accounting for the seasonal distribution and low number of interactions. At La Mancha, with milder minimum temperatures and higher water availability, temperature alone did not account for the seasonal distribution and number of interactions, whereas the effect of the precipitation × temperature interaction was highly significant. Xalapa exhibits the lowest temperatures and the highest precipitation, but the role of these factors was only marginal. We suggest that the vegetation at Xalapa, a mixture of tropical and temperate floristic elements, constrains ant‐plant interactions due to a limited presence of nectaries. Also, ants are less abundant in cool and relatively aseasonal habitats. The other habitats have tropical floristic elements that are abundant and frequently have nectar‐producing structures. We report considerable variation among habitats in the number and seasonal distribution of ant‐plant interactions, and suggest that it is due to the effect of variation in environmental parameters, the richness of plants with nectaries in the vegetation, and habitat heterogeneity.
Summary Geographic variation in abiotic factors and species interactions is widespread and is hypothesized to generate concomitant patterns of species trait variation. For example, higher rates of herbivory at lower latitudes are thought to select for increased plant defences, although latitudinal variation in defences may also be influenced directly by abiotic factors and indirectly by predators and parasitoids reducing herbivore pressure. We measured defences of the herb Ruellia nudiflora among 30 populations spanning a latitudinal gradient from northern Yucatan to southern Belize that vary substantially in leaf herbivory (fourfold), seed herbivory (25‐fold) and seed herbivore parasitism (14‐fold). These surveyed populations span one‐third of the species’ latitudinal distribution (5° of latitude), the entire precipitation gradient of its distribution, and one‐third of the temperature gradient of its distribution. Our prior work showed that leaf herbivory decreased with latitude and that seed herbivory increased with latitude. Here, we measured leaf trichome density and leaf and seed phenolics and tested whether latitudinal variation in climate, herbivory and parasitism explained latitudinal variation in these defensive traits. Patterns of variation in leaf trichomes fully supported predictions, with trichome density increasing with a parallel increase in herbivory towards lower latitudes. While seed phenolics were positively associated with herbivory, and seed herbivory tended to increase with latitude, the predicted (positive) association between latitude and defence was not detectable. There was no detectable association between parasitoids and seed defences. In addition, the association between leaf herbivory and phenolics was weak, and leaf phenolics were not associated with latitude. Importantly, variation in the abiotic environment was associated with plant defence, indicating that abiotic factors can play a major role in shaping plant defences, independently of herbivory. Synthesis. Latitudinal variation in abiotic factors may drive concomitant patterns of variation in plant defences, independently of herbivory. Collectively, these findings highlight the need for assessing geographic variation in plant defences from a multi‐factorial perspective, testing for the simultaneous influence of biotic and abiotic factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.