ABSTRACT. We present a review on the accuracy of asymptotic models for the scattering problem of electromagnetic waves in domains with thin layer. These models appear as first order approximations of the electromagnetic field. They are obtained thanks to a multiscale expansion of the exact solution with respect to the thickness of the thin layer, that makes possible to replace the thin layer by approximate conditions. We present the advantages and the drawbacks of several approximations together with numerical validations and simulations. The main motivation of this work concerns the computation of electromagnetic field in biological cells. The main difficulty to compute the local electric field lies in the thinness of the membrane and in the high contrast between the electrical conductivities of the cytoplasm and of the membrane, which provides a specific behavior of the electromagnetic field at low frequencies.
We study the behavior of the electromagnetic field in a biological cell modelled by a medium surrounded by a thin layer and embedded in an ambient medium. We derive approximate transmission conditions in order to replace the membrane by these conditions on the boundary of the interior domain. Our approach is essentially geometric and based on a suitable change of variables in the thin layer. Few notions of differential calculus are given in order to obtain the first order conditions in a simple way, and numerical simulations validate the theoretical results. Asymptotic transmission conditions at any order are given in the last section of the paper. This paper extends to the time-harmonic Maxwell equations the previous works presented in [30, 33, 31, 6].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.