This article focused on the estimation of the state of charge (SoC) of a Li-con Cell by carrying out a series of experimental tests at various operating temperatures and SoC. The cell was characterized by electrochemical impedance spectroscopy (EIS) tests, from which the impedance frequency spectrum for different SoC and temperatures was obtained. Indeed, the cell model consisted of a modified Randles circuit type that included a constant phase element so-called Warburg impedance. Each circuit parameter was obtained from the EIS tests. The obtained were been used to develop two numerical models for each parameter, i.e., one based on numerical correlations and the other based on the artificial neural network (ANN) method. A genetic algorithm was used to solve and optimize the numerical models. The accuracy of the models was examined and the results showed that the ANN-based model was more accurate than the correlations-based model. The root mean square relative error (RMSRE) of the parameters Rs, R1, C1 and W for the ANN-based model were: 4.63%, 13.65%, 10.96% and 4.4%, respectively, compared to 7.09%, 27.45%, 34.36% and 7.07% for the correlations-based model, respectively. The SoC was estimated using the extended Kalman filter based on a Randles model, with an estimation RMSRE of about 1.19%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.