The carbon–carbon coupling via electrochemical reduction of carbon dioxide represents the biggest challenge for using this route as platform for chemicals synthesis. Here we show that nanostructured iron (III) oxyhydroxide on nitrogen-doped carbon enables high Faraday efficiency (97.4%) and selectivity to acetic acid (61%) at very-low potential (−0.5 V vs silver/silver chloride). Using a combination of electron microscopy, operando X-ray spectroscopy techniques and density functional theory simulations, we correlate the activity to acetic acid at this potential to the formation of nitrogen-coordinated iron (II) sites as single atoms or polyatomic species at the interface between iron oxyhydroxide and the nitrogen-doped carbon. The evolution of hydrogen is correlated to the formation of metallic iron and observed as dominant reaction path over iron oxyhydroxide on oxygen-doped carbon in the overall range of negative potential investigated, whereas over iron oxyhydroxide on nitrogen-doped carbon it becomes important only at more negative potentials.
Chalcopyrite-structured semiconductors have promising potential as low-cost thermoelectric materials, but their thermoelectric figures of merit must be increased for practical applications. Understanding their thermal properties is important for engineering their thermal conductivities and achieving better thermoelectric behavior. We present here a theoretical investigation of the lattice thermal conductivities of 20 chalcopyrite semiconductors with an ABX 2 composition (I−III−VI 2 ) (A = Cu or Ag; B = Al, Ga, In, or Tl; X = S, Se, or Te). To afford accurate predictions across this large family of compounds, we solve the Boltzmann transport equation with force constants derived from density functional theory calculations and machine learning-based regression algorithms, reducing by between 1 and 2 orders of magnitude the computational cost with respect to conventional approaches of the same accuracy. The results are in good agreement with available experimental data and allow us to rationalize the role of chemical composition, temperature, and nanostructuring in the thermal conductivities across this important family of semiconductors.
Novel functional materials are urgently needed to help combat the major global challenges facing humanity, such as climate change and resource scarcity. Yet, the traditional experimental materials discovery process is slow and the material space at our disposal is too vast to effectively explore using intuition-guided experimentation alone. Most experimental materials discovery programs necessarily focus on exploring the local space of known materials, so we are not fully exploiting the enormous potential material space, where more novel materials with unique properties may exist. Computation, facilitated by improvements in open-source software and databases, as well as computer hardware has the potential to significantly accelerate the rational development of materials, but all too often is only used to postrationalize experimental observations. Thus, the true predictive power of computation, where theory leads experimentation, is not fully utilized. Here, we discuss the challenges to successful implementation of computation-driven materials discovery workflows, and then focus on the progress of the field, with a particular emphasis on the challenges to reaching novel materials.
Recent progress in the synthesis of π-conjugated porphyrin arrays of different shapes and dimensionalities motivates us to examine the band structures of infinite (periodic) porphyrin nanostructures. We use screened hybrid density functional theory simulations and Wannier function interpolation to obtain accurate band structures of linear chains, 2D nanosheets and nanotubes made of zinc porphyrins. Porphyrin units are connected by butadiyne (C4) or ethyne (C2) linkers, or "fused" (C0), i.e. with no linker. The electronic properties exhibit strong variations with the number of linking carbon atoms (C0/C2/C4). For example, all C0 nanostructures exhibit gapless or metallic band structures, whereas band gaps open for the C2 or C4 structures. The 2 reciprocal space point at which the gaps are observed also show fluctuations with the length of the linkers. We discuss the evolution of the electronic structure of finite porphyrin tubes, made of a few stacked six-porphyrin rings, towards the behavior of the infinite nanotube. Our results suggest approaches for engineering porphyrin-based nanostructures to achieve target electronic properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.