Signatures of balancing selection operating on specific gene loci in endemic pathogens can identify candidate targets of naturally acquired immunity. In malaria parasites, several leading vaccine candidates convincingly show such signatures when subjected to several tests of neutrality, but the discovery of new targets affected by selection to a similar extent has been slow. A small minority of all genes are under such selection, as indicated by a recent study of 26 Plasmodium falciparum merozoite-stage genes that were not previously prioritized as vaccine candidates, of which only one (locus PF10_0348) showed a strong signature. Therefore, to focus discovery efforts on genes that are polymorphic, we scanned all available shotgun genome sequence data from laboratory lines of P. falciparum and chose six loci with more than five single nucleotide polymorphisms per kilobase (including PF10_0348) for in-depth frequency–based analyses in a Kenyan population (allele sample sizes >50 for each locus) and comparison of Hudson–Kreitman–Aguade (HKA) ratios of population diversity (π) to interspecific divergence (K) from the chimpanzee parasite Plasmodium reichenowi. Three of these (the msp3/6-like genes PF10_0348 and PF10_0355 and the surf4.1 gene PFD1160w) showed exceptionally high positive values of Tajima's D and Fu and Li's F indices and have the highest HKA ratios, indicating that they are under balancing selection and should be prioritized for studies of their protein products as candidate targets of immunity. Combined with earlier results, there is now strong evidence that high HKA ratio (as well as the frequency-independent ratio of Watterson's θ/K) is predictive of high values of Tajima's D. Thus, the former offers value for use in genome-wide screening when numbers of genome sequences within a species are low or in combination with Tajima's D as a 2D test on large population genomic samples.
Immunity against the bovine intracellular protozoan parasite Theileria parva has been shown to be mediated by CD8 T cells. Six antigens targeted by CD8 T cells from T. parva-immune cattle of different major histocompatibility complex (MHC) genotypes have been identified, raising the prospect of developing a subunit vaccine. To facilitate further dissection of the specificity of protective CD8 T-cell responses and to assist in the assessment of responses to vaccination, we set out to identify the epitopes recognized in these T. parva antigens and their MHC restriction elements. Nine epitopes in six T. parva antigens, together with their respective MHC restriction elements, were successfully identified. Five of the cytotoxic-T-lymphocyte epitopes were found to be restricted by products of previously described alleles, and four were restricted by four novel restriction elements. Analyses of CD8 T-cell responses to five of the epitopes in groups of cattle carrying the defined restriction elements and immunized with live parasites demonstrated that, with one exception, the epitopes were consistently recognized by animals of the respective genotypes. The analysis of responses was extended to animals immunized with multiple antigens delivered in separate vaccine constructs. Specific CD8 T-cell responses were detected in 19 of 24 immunized cattle. All responder cattle mounted responses specific for antigens for which they carried an identified restriction element. By contrast, only 8 of 19 responder cattle displayed a response to antigens for which they did not carry an identified restriction element. These data demonstrate that the identified antigens are inherently dominant in animals with the corresponding MHC genotypes.
The persistence of African swine fever virus (ASFV) in endemic areas, with small-scale but regular outbreaks in domestic pigs, is not well understood. ASFV has not been detected using conventional diagnosis in these pigs or adjacent populations of resistant African wild pigs, that could act as potential carriers during the outbreaks. However, such data are crucial for the design of evidence-based control strategies. We conducted cross-sectional (1107 pigs) and longitudinal (100 pigs) monitoring of ASFV prevalence in local pigs in Kenya and Uganda. The horizontal survey revealed no evidence of ASFV in the serum or blood using either conventional or real-time PCR. One pig consistently tested positive using ELISA, but negative using PCR assays on blood. Interestingly, the isotype of the antibodies from this animal were strongly IgA biased relative to control domestic pigs and warthogs, suggesting a role for mucosal immunity. The tissues from this pig were positive by PCR following post-mortem. Internal organ tissues of 44 healthy pigs (28 sentinel pigs and 16 pigs from slaughter slabs) were tested with four different PCR assays; 15.9 % were positive for ASFV suggesting that healthy pigs carrying ASFV exist in the swine population in the study area. P72 and p54 genotyping of ASFV revealed very limited diversity: all were classified in genotype IX at both loci, as were virtually all viruses causing recent ASF outbreaks in the region. Our study suggests that carrier pigs may play a role in ASF disease outbreaks, although the triggers for outbreaks remain unclear and require further investigation. This study significantly increases scientific knowledge of the epidemiology of ASF in the field in Africa, which will contribute to the design of effective surveillance and control strategies.
Subunit viral vaccines are typically not as efficient as live attenuated or inactivated vaccines at inducing protective immune responses. This paper describes an alternative ‘biomimetic’ technology; whereby viral antigens were formulated around a polymeric shell in a rationally arranged fashion with a surface glycoprotein coated on to the surface and non-structural antigen and adjuvant encapsulated. We evaluated this model using BVDV E2 and NS3 proteins formulated in poly-(D, L-lactic-co-glycolic acid) (PLGA) nanoparticles adjuvanted with polyinosinic:polycytidylic acid (poly(I:C) as an adjuvant (Vaccine-NP). This Vaccine-NP was compared to ovalbumin and poly(I:C) formulated in a similar manner (Control-NP) and a commercial adjuvanted inactivated BVDV vaccine (IAV), all inoculated subcutaneously and boosted prior to BVDV-1 challenge. Significant virus-neutralizing activity, and E2 and NS3 specific antibodies were observed in both Vaccine-NP and IAV groups following the booster immunisation. IFN-γ responses were observed in ex vivo PBMC stimulated with E2 and NS3 proteins in both vaccinated groups. We observed that the protection afforded by the particulate vaccine was comparable to the licenced IAV formulation. In conclusion, the biomimetic particulates showed a promising immunogenicity and efficacy profile that may be improved by virtue of being a customisable mode of delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.