Background: Yellow fever outbreaks have re-emerged in Brazil during 2016-18, with mortality rates up to 30%. Although urban transmission has not been reported since 1942, the risk of re-urbanization of yellow fever is significant, as Aedes aegypti is present in most tropical and sub-tropical cities in the World and still remains the main vector of urban YFV. Although the YFV vaccine is safe and effective, it does not always reach populations at greatest risk of infection and there is an acknowledged global shortage of vaccine supply. The introgression of Wolbachia bacteria into Ae. aegypti mosquito populations is being trialed in several countries (www.worldmosquito.org) as a biocontrol method against dengue, Zika and chikungunya. Here, we studied the ability of Wolbachia to reduce the transmission potential of Ae. aegypti mosquitoes for Yellow fever virus (YFV). Methods: Two recently isolated YFV (primate and human) were used to challenge field-derived wild-type and Wolbachia-infected (wMel +) Ae. aegypti mosquitoes. The YFV infection status was followed for 7, 14 and 21 days post-oral feeding (dpf). The YFV transmission potential of mosquitoes was evaluated via nano-injection of saliva into uninfected mosquitoes or by inoculation in mice. Results: We found that Wolbachia was able to significantly reduce the prevalence of mosquitoes with YFV infected heads and thoraces for both viral isolates. Furthermore, analyses of mosquito saliva, through indirect injection into naïve mosquitoes or via interferon-deficient mouse model, indicated Wolbachia was associated with profound reduction in the YFV transmission potential of mosquitoes (14dpf). Conclusions: Our results suggest that Wolbachia introgression could be used as a complementary strategy for prevention of urban yellow fever transmission, along with the human vaccination program.
Chikungunya (CHIKV) is an arthritogenic alphavirus that causes a self-limiting disease usually accompanied by joint pain and/or polyarthralgia with disabling characteristics. Immune responses developed during the acute phase of CHIKV infection determine the rate of disease progression and resolution. Annexin A1 (AnxA1) is involved in both initiating inflammation and preventing over-response, being essential for a balanced end of inflammation. In this study, we investigated the role of the AnxA1-FPR2/ALX pathway during CHIKV infection. Genetic deletion of AnxA1 or its receptor enhanced inflammatory responses driven by CHIKV. These knockout mice showed increased neutrophil accumulation and augmented tissue damage at the site of infection compared with control mice. Conversely, treatment of wild-type animals with the AnxA1 mimetic peptide (Ac2–26) reduced neutrophil accumulation, decreased local concentration of inflammatory mediators and diminished mechanical hypernociception and paw edema induced by CHIKV-infection. Alterations in viral load were mild both in genetic deletion or with treatment. Combined, our data suggest that the AnxA1-FPR2/ALX pathway is a potential therapeutic strategy to control CHIKV-induced acute inflammation and polyarthralgia.
Arthralgia is a hallmark of chikungunya virus (CHIKV) infection and can be very debilitating and associated with a robust local inflammatory response. Many pathophysiological aspects associated with the disease remain to be elucidated. Here, we describe a novel model of CHIKV infection in immunocompetent mice and evaluate the role of tumour necrosis factor in the pathogenesis of the disease. C57BL/6 wild type (WT) or TNF receptor 1 deficient (TNFR1 À/À ) mice were inoculated with 1 Â 10 6 PFU of CHIKV in the paw. Alternatively, etanercept was used to inhibit TNF in infected WT mice. Hypernociception, inflammatory and virological analysis were performed. Inoculation of CHIKV into WT mice induced persistent hypernociception. There was significant viral replication in target organs and local production of inflammatory mediators in early time-points after infection.CHIKV infection was associated with specific humoral IgM and IgG responses. In TNFR1 À/À mice, there was a decrease in the hypernociception threshold, which was associated with a milder local inflammatory response in the paw but delayed viral clearance. Local or systemic treatment with etanercept reduced CHIKVinduced hypernociception. This is the first study to describe hypernociception, a clinical correlation of arthralgia, in immunocompetent mice infected with CHIKV. It also demonstrates the dual role of TNF in contributing to viral clearance but driving tissue damage and hypernociception. Inhibition of TNF may have therapeutic benefits but its role in viral clearance suggests that viral levels must be monitored in CHIKV-infected patients and that TNF inhibitors should ideally be used in combination with anti-viral drugs.
Background: Yellow fever outbreaks have re-emerged in Brazil during 2016-18, with mortality rates up to 30%. Although urban transmission has not been reported since 1942, the risk of re-urbanization of yellow fever is significant, as Aedes aegypti is present in most tropical and sub-tropical cities in the World and used to be the main vector in the past. The introgression of Wolbachia bacteria into Ae. aegypti mosquito populations is being trialed in several countries (www.worldmosquito.org)as a biocontrol method against dengue, Zika and chikungunya. Here, we studied the ability of Wolbachia to reduce the transmission potential of Ae. aegypti mosquitoes for yellow fever virus (YFV). Methods: Two recently isolated YFV (primate and human) were used to challenge field-derived wild-type and Wolbachia-infected (wMel +) Ae. aegypti mosquitoes. The YFV infection status was followed for 7, 14 and 21 days post-oral feeding (dpf). The YFV transmission potential of mosquitoes was evaluated via nano-injection of saliva into uninfected mosquitoes or by inoculation in mice. Results: We found that Wolbachia was able to significantly reduce the prevalence of mosquitoes with YFV infected heads and thoraces for both viral isolates. Furthermore, analyses of mosquito saliva, through indirect injection into naïve mosquitoes or via interferon-deficient mouse model, indicated Wolbachia was associated with profound reduction in the YFV transmission potential of mosquitoes (14dpf). Conclusions: Our results suggest that Wolbachia introgression could be used as a complementary strategy for prevention of urban yellow fever transmission, along with the human vaccination program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.