The rate of 32Pi incorporation into the main membrane phospholipid fractions, i.e. phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylinositol (PI), as well as their contents in the cells during synchronous growth of the myxomycete, Physarum polycephalum, have been studied. It has been found that both the phospholipid levels and the rates of '*Pi incorporation increase during the S phase till the early G2 phase, remain nearly constant during the G, phase and fall to the initial level at the end of the G2 phase and in mitosis. It has been revealed that the rate of 32Pi incorporation into PC is very low compared to PE and PI, in spite of the fact that the PC level is the highest. The possible reasons of this phenomenon are discussed.
Genetic evidence has shown the presence of a common spindle pole organiser in Physarum amoebae and plasmodia. But the typical centrosome and mitosis observed in amoebae are replaced in plasmodia by an intranuclear mitosis devoid of any structurally defined organelle. The fate of gamma-tubulin and of another component (TPH17) of the centrosome of Physarum amoebae was investigated in the nuclei of synchronous plasmodia. These two amoebal centrosomal elements were present in the nuclear compartment during the entire cell cycle and exhibited similar relocalisation from metaphase to telophase. Three preparation methods showed that gamma-tubulin containing material was dispersed in the nucleoplasm during interphase. It constituted an intranuclear thread-like structure. In contrast, the TPH17 epitope exhibited a localisation close to the nucleolus. In late G2-phase, the gamma-tubulin containing elements condensed in a single organelle which further divided. Intranuclear microtubules appeared before the condensation of the gamma-tubulin material and treatment with microtubule poisons suggested that microtubules were required in this process. The TPH17 epitope relocalised in the intranuclear spindle later than the gamma-tubulin containing material suggesting a maturation process of the mitotic poles. The decondensation of the gamma-tubulin material and of the material containing the TPH17 epitope occurred immediately after telophase. Hence in the absence of a structurally defined centrosome homologue, the microtubule nucleating material undergoes a cycle of condensation and decondensation during the cell cycle.
Cells of eukaryotic organisms exhibit microtubules with various functions during the different developmental stages. The identification of multiple forms of alpha- and beta-tubulins had raised the question of their possible physiological roles. In the myxomycete Physarum polycephalum a complex polymorphism for alpha- and beta-tubulins has been correlated with a specific developmental expression pattern. Here, we have investigated the potential heterogeneity of gamma-tubulin in this organism. A single gene, with 3 introns and 4 exons, and a single mRNA coding for gamma-tubulin were detected. They coded for a polypeptide of 454 amino acids, with a predicted molecular mass of 50,674, which presented 64–76% identity with other gamma-tubulins. However, immunological studies identified two gamma-tubulin polypeptides, both present in the two developmental stages of the organism, uninucleate amoebae and multinucleate plasmodia. The two gamma-tubulins, called gamma s- and gamma f-tubulin for slow and fast electrophoretic mobility, exhibited apparent molecular masses of 52,000 and 50,000, respectively. They were recognized by two antibodies (R70 and JH46) raised against two distinct conserved sequences of gamma-tubulins. They were present both in the preparations of amoebal centrosomes possessing two centrioles and in the preparations of plasmodial nuclear metaphases devoid of structurally distinct polar structures. These two gamma-tubulins exhibited different sedimentation properties as shown by ultracentrifugation and sedimentation in sucrose gradients. Moreover, gamma s-tubulin was tightly bound to microtubule organizing centers (MTOCs) while gamma f-tubulin was loosely associated with these structures. This first demonstration of the presence of two gamma-tubulins with distinct properties in the same MTOC suggests a more complex physiological role than previously assumed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.