BackgroundIdiopathic pulmonary fibrosis (IPF) is a progressive and lethal disorder characterized by fibroproliferation and excessive accumulation of extracellular matrix in the lung.Methods and FindingsUsing oligonucleotide arrays, we identified osteopontin as one of the genes that significantly distinguishes IPF from normal lungs. Osteopontin was localized to alveolar epithelial cells in IPF lungs and was also significantly elevated in bronchoalveolar lavage from IPF patients. To study the fibrosis-relevant effects of osteopontin we stimulated primary human lung fibroblasts and alveolar epithelial cells (A549) with recombinant osteopontin. Osteopontin induced a significant increase of migration and proliferation in both fibroblasts and epithelial cells. Epithelial growth was inhibited by the pentapeptide Gly-Arg-Gly-Asp-Ser (GRGDS) and antibody to CD44, while fibroproliferation was inhibited by GRGDS and antibody to αvβ3 integrin. Fibroblast and epithelial cell migration were inhibited by GRGDS, anti-CD44, and anti-αvβ3. In fibroblasts, osteopontin up-regulated tissue inhibitor of metalloprotease-1 and type I collagen, and down-regulated matrix metalloprotease-1 (MMP-1) expression, while in A549 cells it caused up-regulation of MMP-7. In human IPF lungs, osteopontin colocalized with MMP-7 in alveolar epithelial cells, and application of weakest link statistical models to microarray data suggested a significant interaction between osteopontin and MMP-7.ConclusionsOur results provide a potential mechanism by which osteopontin secreted from the alveolar epithelium may exert a profibrotic effect in IPF lungs and highlight osteopontin as a potential target for therapeutic intervention in this incurable disease.
Fibroblast proliferation and extracellular matrix accumulation characterize idiopathic pulmonary fibrosis (IPF). We evaluated the presence of tissue inhibitor of metalloproteinase (TIMP)-1, -2, -3, and -4; collagenase-1, -2, and -3; gelatinases A and B; and membrane type 1 matrix metalloproteinase (MMP) in 12 IPF and 6 control lungs. TIMP-1 was found in interstitial macrophages and TIMP-2 in fibroblast foci. TIMP-3 revealed an intense staining mainly decorating the elastic lamina in vessels. TIMP-4 was expressed in IPF lungs by epithelial and plasma cells. TIMP-2 colocalized with Ki67 in fibroblasts, whereas TIMP-3 colocalized with p27 in inflammatory and epithelial cells. Collagenase-1 was localized in macrophages and alveolar epithelial cells, collagenase-2 was localized in a few neutrophils, and collagenase-3 was not detected. MMP-9 was found in neutrophils and subepithelial myofibroblasts. Myofibroblast expression of MMP-9 was corroborated in vitro by RT-PCR. MMP-2 was noticed in myofibroblasts, some of them close to areas of basement membrane disruption, and membrane type 1 MMP was noticed in interstitial macrophages. These findings suggest that in IPF there is higher expression of TIMPs compared with collagenases, supporting the hypothesis that a nondegrading fibrillar collagen microenvironment is prevailing.
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disorder characterized by fibroblast proliferation and extracellular matrix accumulation. However, studies on fibroblast growth rate and collagen synthesis have given contradictory results. Here we analyzed fibroblast growth rate by a formazan-based chromogenic assay; fibroblast apoptosis by in situ end labeling (ISEL) and propidium iodide staining; percent of alpha-smooth muscle actin (alpha-SMA) positive cells by fluorescence-activated cell sorter; and alpha1-(I) collagen, transforming growth factor (TGF)-beta1, collagenase-1, gelatinases A and B, and tissue inhibitor of metalloproteinase (TIMP)-1, -2, -3, and -4 expression by reverse transcriptase/polymerase chain reaction in fibroblasts derived from IPF and control lungs. Growth rate was significantly lower in IPF fibroblasts compared with controls (13.3 +/- 38.5% versus 294.6 +/- 57%, P < 0.0001 at 13 d). Conversely, a significantly higher percentage of apoptotic cells was observed in IPF-derived fibroblasts (ISEL: 31.9 +/- 7.0% versus 15.5 +/- 7.6% from controls; P < 0.008). alpha-SMA analysis revealed a significantly higher percentage of myofibroblasts in IPF samples (62.8 +/- 25.2% versus 14.8 +/- 11.7% from controls; P < 0.01). IPF fibroblasts were characterized by an increase in pro-alpha1-(I) collagen, TGF-beta1, gelatinase B, and all TIMPs' gene expression, whereas collagenase-1 and gelatinase A expression showed no differences. These results suggest that fibroblasts from IPF exhibit a profibrotic secretory phenotype, with lower growth rate and increased spontaneous apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.