Existen algoritmos que ayudan en el aprendizaje de los agentes artificiales, de los cuales se aplicará en el presente trabajo los conocidos como, clasificadores en cascada. Los objetivos del presente estudio son: implementar y evaluar el rendimiento de ocho clasificadores en cascada usando dos tipos de extractores de características en el reconocimiento de hojas del árbol Pithecellobium Samán también conocido como árbol de Samán. Para la implementación de los clasificadores en cascada, se usa la librería EmguCV junto con Visual Studio y a cada clasificador, se le suministran imágenes del objeto a reconocer e imágenes que no lo sean. Los clasificadores se evaluarán usando las siguientes curvas: ROC (Receiver Operating Giaractersistic) para calcular el área bajo la curva, DET (Detection Error TradeofJ) para evaluar las muestras positivas mal clasificadas y PR (Precision and Recall) para medir la precisión. Como resultado, el extractor más eficiente es el Local Binary Pattern (LPB). PALABRAS CLAVE Aprendi.aje automático, cIasflcadores en cascada, Emgu CJ/ Haar, 1 .RP, visión artijicial, intelgencia artificiaL ABSTRACTThere are algorithms that assist in the learning of artificial agents, which will be applied in the present work known as cascade classifiers. The objectives of this study are: implementing and evaluating performance eight cascaded classiflers using two kinds of feature extractors to recognize Pithecellobium leaf tree also known as Saman Saman tree. For the implementadon of cascade classifiers, EmguCV library and Visual Studio are used, for each c1assi1ier is supplied with images of object to be recognized and images that are not. The classifiers are evaluated using the following curves: ROC (Receiver Operating Charactersisticl to calculate the area under the curve, DET (Detection Error Tradeoff to assess positive samples misclassified and PR (Precision and Recail) to measure accuracy. As a result, the most efficient extractor Local Binarv Pattern is (LPB). Cl/Ç Harr, LBP, compuler vision, artificial intel4gence. KEYWORDS Machine learning, class/lers cascade Emgu
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.