Hybrid metal oxide nano-and microstructures exhibit novel properties, which make them promising candidates for a wide range of applications, including gas sensing. In this work, the characteristics of the hybrid ZnOBi 2 O 3 and ZnO-Zn 2 SnO 4 tetrapod (T) networks are investigated in detail. The gas sensing studies reveal improved performance of the hybrid networks compared to pure ZnO-T networks. For the ZnO-T-Bi 2 O 3 networks, an enhancement in H 2 gas response is obtained, although the observed p-type sensing behavior is attributed to the formed junctions between the arms of ZnO-T covered with Bi 2 O 3 and the modulation of the regions where holes accumulate under exposure to H 2 gas. In ZnO-T-Zn 2 SnO 4 networks, a change in selectivity to CO gas with high response is noted. The devices based on individual ZnO-T-Bi 2 O 3 and ZnO-T-Zn 2 SnO 4 structures showed an enhanced H 2 gas response, which is explained on the basis of interactions (electronic sensitization) between the ZnO-T arm and Bi 2 O 3 shell layer and single Schottky contact structure, respectively. Density functional theory-based calculations provide mechanistic insights into the interaction of H 2 and CO gas molecules with Bi-and Sn-doped ZnO(0001) surfaces, revealing changes in the Fermi energies, as well as charge transfer between the molecules and surface species, which facilitate gas sensing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.