Abstract. The socioeconomic status of a population or an individual provides an understanding of its access to housing, education, health or basic services like water and electricity. In itself, it is also an indirect indicator of the purchasing power and as such a key element when personalizing the interaction with a customer, especially for marketing campaigns or offers of new products. In this paper we study if the information derived from the aggregated use of cell phone records can be used to identify the socioeconomic levels of a population. We present predictive models constructed with SVMs and Random Forests that use the aggregated behavioral variables of the communication antennas to predict socioeconomic levels. Our results show correct prediction rates of over 80% for an urban population of around 500,000 citizens.
Pervasive large-scale infrastructures generate datasets that contain human behavior information. In this context, cell phones and cell phone networks, due to its pervasiveness, can be considered sensors of human behavior and one of the main elements that define our digital footprint. In this paper we present a technique for the automatic identification and classification of land uses from the information generated by a cell-phone network infrastructure. Our approach first computes the aggregated calling patterns of the antennas of the network and, after that, finds the optimum cluster distribution to automatically identify how citizens use the different geographic regions within a city. We present and validate our results using cell phone records collected for the city of Madrid.
In the third shared task of the Computational Approaches to Linguistic Code-Switching (CALCS) workshop, we focus on Named Entity Recognition (NER) on code-switched social-media data. We divide the shared task into two competitions based on the English-Spanish (ENG-SPA) and Modern Standard Arabic-Egyptian (MSA-EGY) language pairs. We use Twitter data and 9 entity types to establish a new dataset for code-switched NER benchmarks. In addition to the CS phenomenon, the diversity of the entities and the social media challenges make the task considerably hard to process. As a result, the best scores of the competitions are 63.76% and 71.61% for ENG-SPA and MSA-EGY, respectively. We present the scores of 9 participants and discuss the most common challenges among submissions.
The rapid evolution of mobile devices, their applications, and the amount of data generated by them causes a significant increase in bandwidth consumption and congestions in the network core. Edge Computing offers a solution to these performance drawbacks by extending the cloud paradigm to the edge of the network using capable nodes of processing compute-intensive tasks. In the recent years, vehicular edge computing has emerged for supporting mobile applications. Such paradigm relies on vehicles as edge node devices for providing storage, computation, and bandwidth resources for resource-constrained mobile applications. In this article, we study the challenges of computation offloading for vehicular edge computing. We propose a new classification for the better understanding of the literature designing vehicular edge computing. We propose a taxonomy to classify partitioning solutions in filter-based and automatic techniques; scheduling is separated in adaptive, social-based, and deadline-sensitive methods, and finally data retrieval is organized in secure, distance, mobility prediction, and social-based procedures. By reviewing and analyzing literature, we found that vehicular edge computing is feasible and a viable option to address the increasing volume of data traffic. Moreover, we discuss the open challenges and future directions that must be addressed towards efficient and effective computation offloading and retrieval from mobile users to vehicular edge computing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.