This article presents the SASys architecture, which main goal is to identify the student's emotional profile through the use of FrameNet Brasil to establish the author's feeling in texts. A recommendation system, based on the student's emotional profile and learning style, sends motivational messages to mitigate school dropout. The proposal was evaluated by a case study with students of the Methodology of Scientific and Educational Research class of a learning distance course. The results point to the feasibility of the proposal for the assertiveness of the student's emotional profile during the class and detection of students' risk of dropout.Resumo. Este artigo apresenta a arquitetura SASys, cujo objetivo principal é identificar o estado emocional do aluno, através do uso da FrameNet Brasil para determinar o sentimento do autor em textos. Um sistema de recomendação, baseado no estado emocional do aluno e do seu estilo de aprendizagem, envia mensagens motivacionais para mitigar a evasão. A proposta foi avaliada com a condução de um estudo de caso com alunos da disciplina de Metodologia de Pesquisa Científica e Educacional de um curso à Distância. Os resultados apontam para a viabilidade da proposta para a assertividade do estado emocional do aluno ao longo da disciplina e detecção de alunos com risco de evasão.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.