The glass/air interface shows electrical properties that are unexpected for a widely used electrical insulator. The mobility of interfacial charge carriers under 80% relative humidity (RH) is 4.81 × 10 −5 m 2 s −1 V −1 , 3 orders of magnitude higher than the electrophoretic mobility of simple ions in water and less than 2 orders of magnitude lower than the electron mobility in copper metal. This allows the glass/air interface to reach the same potential as a biased contacting metal quickly. The interfacial surface resistance R increases by more than 5 orders of magnitude when the RH decreases from 80 to 2%, following an S-shaped curve with small hysteresis. Moreover, the biased surfaces store charge, as shown by Kelvin potential measurements. Applying an electric field parallel to the surface produces RH-dependent results: under low humidity, the interface behaves as expected for an ideal two-dimensional parallel-plate capacitor, while under high RH, it acquires and maintains excess negative charge, which is lost under low RH. The glass surface morphology and potential distribution change on the glass/air interface under high RH and applied potential, including the extensive elimination of nonglass contaminating particles and potential levelling. All these surprising results are explained by using a protonic-charge-transfer mechanism: mobile protons dissociated from silanol groups migrate rapidly along a field-oriented adsorbed water layer, while the matrix-bound silicate anions remain immobile. Glass may thus be classified as the ionic analogue of a topological insulator but based on structural features and charge-transfer mechanisms different from the chalcogenides that have been receiving great attention in the literature.
For the past 10 years, the Virtual Tournament of Chemistry, TVQ, has been held in Brazil, engaging high school students with challenging questions that require cooperation, effort, and a literature search, while exploring the advantages of the Internet as a tool for self-instruction. The tournament has worked both as a way of narrowing the gap between high school and college chemistry and as a talent scout for STEM undergraduate programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.