Recent work with approaches like recombinant mutants and X-ray crystallography has given much new information about the ligand-binding properties of human serum albumin (HSA). The information increases the understanding of this unique transport and depot protein and could give a structural basis for the possible construction of therapeutic agents with altered HSA-binding properties. A tabulation of high-affinity binding sites for both endogenous and exogenous compounds has been made; it could be useful for the above-mentioned purpose, but it could also be of value when trying to predict potential drug interactions at the protein-binding level. Drug displacement is not always a complication to therapy; it can be used to increase the biological effect of a drug. However, due to rebinding at other sites, the increase in the free concentration of a displaced ligand can be less than expected. Drugs and drug metabolites can also interact covalently with HSA; thiol-containing drugs often bind to the single free cysteine residue of HSA, and glucuronidated drugs react irreversibly with other residues of the protein. Reversible binding of ligands is often stereospecific, and therefore immobilized HSA can be used to separate drug isomers. Albumin-containing dialysates are useful for extracorporeal removal of endogenous toxins and in the treatment of drug overdoses. HSA has different types of hydrolytic activities, which also can be stereospecific. The esterase-like property seems especially useful in converting prodrugs to active drugs in plasma.
The degree of oxidized cysteine (Cys) 34 in human serum albumin (HSA), as determined by high performance liquid chromatography (HPLC), is correlated with oxidative stress related pathological conditions. In order to further characterize the oxidation of Cys34-HSA at the molecular level and to develop a suitable analytical method for a rapid and sensitive clinical laboratory analysis, the use of electrospray ionization time-of-flight mass spectrometer (ESI-TOFMS) was evaluated. A marked increase in the cysteinylation of Cys34 occurs in chronic liver and kidney diseases and diabetes mellitus. A significant positive correlation was observed between the Cys-Cys34-HSA fraction of plasma samples obtained from 229 patients, as determined by ESI-TOFMS, and the degree of oxidized Cys34-HSA determined by HPLC. The Cys-Cys34-HSA fraction was significantly increased with the progression of liver cirrhosis, and was reduced by branched chain amino acids (BCAA) treatment. The changes in the Cys-Cys34-HSA fraction were significantly correlated with the alternations of the plasma levels of advanced oxidized protein products, an oxidative stress marker for proteins. The binding ability of endogenous substances (bilirubin and tryptophan) and drugs (warfarin and diazepam) to HSA purified from chronic liver disease patients were significantly suppressed but significantly improved by BCAA supplementation. Interestingly, the changes in this physiological function of HSA in chronic liver disease were correlated with the Cys-Cys34-HSA fraction. In conclusion, ESI-TOFMS is a suitable high throughput method for the rapid and sensitive quantification of Cys-Cys34-HSA in a large number of samples for evaluating oxidative stress related chronic disease progression or in response to a treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.