Marco multiannual convention FRO1855, and the cooperation with WBI/AGCID SUB2019/419031 (DIE19-0005) and the Belgian Scientific Research Fund FNRS for financial support. The authors would also like to thank O. Milis for its technical support.
This article focuses on a systematic study of a Ti-6Al-4V alloy in order to extensively characterize the main mechanical properties at the macro-, micro- and submicrometric length scale under different stress fields. Hardness, elastic modulus, true stress–strain curves and strain-hardening exponent are correlated with the intrinsic properties of the α- and β-phases that constitute this alloy. A systematic characterization process followed, considering the anisotropic effect on both orthogonal crystallographic directions, as well as determining the intrinsic properties for the α-phase. An analytical relationship was established between the flow stress determined under different stress fields, testing geometries and length scales, highlighting that it is possible to estimate flow stress under compression and/or tensile loading from the composite hardness value obtained by instrumented nanoindentation testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.