Study Design. A retrospective case series.Objective. This study aims to assess the rates of lumbar interbody cage failures based on their material and manufacturer. Summary of Background Data. Perioperative lumbar interbody cage malfunctions are underreported events in the spine literature and may result in complications. Although the Food and Drug Administration ensures the safety of these devices under physiological conditions after implantation, these devices may experience nonphysiological conditions during implantation, which may be overlooked. Materials and Methods. The MAUDE database was examined for reports of lumbar cage device malfunctions from 2012 to 2021. Each report was categorized based on failure type and implant design. A market analysis was performed by dividing the total number of failures per year for each manufacturer by their approximate yearly revenue from spinal implants in the United States. Outlier analysis was performed to generate a threshold value above which failure rates were defined as greater than the normal index.Results. Overall, 1875 lumbar cage malfunctions were identified. Of these, 1230 (65.6%) were cage breakages, 257 (13.7%) were instrument malfunctions, 177 (9.4%) were cage migrations, 143 (7.6%) were assembly failures, 70 (4.5%) were screw-related failures, and 21 (1.1%) were cage collapses. Of the breakages, 923 (74.9%) occurred during insertion or impaction and 97 entries detailed a medical complication or a retained foreign body. Of the migrations, 155 (88.6%) were identified postoperatively, of which 73 (47.1%) detailed complications and 52 (33.5%) required a revision procedure. Market analysis demonstrated that Medtronic, Zimmer Biomet, Stryker, Seaspine, and K2M exceeded the calculated threshold. Conclusions. Lumbar cages with polyether ether ketone core material failed more frequently by breakage, whereas titanium surface cages failed more frequently by migration. Failure rates varied depending on the manufacturer. Most cage breakages identified in the present study occurred intraoperatively during implantation. These findings call for a more detailed Food and Drug Administration evaluation of these intraoperative malfunctions before commercial approval.
Study Design. Retrospective case series. Objective. To characterize failure rates of cervical cages based on manufacturer and design characteristics using the nationwide database of reported malfunctions. Background. The Food and Drug Administration (FDA) aims to ensure the safety and efficacy of cervical interbody implants postimplantation; however, intraoperative malfunctions may be overlooked. Materials and Methods. The FDA's Manufacturer and User Facility Device Experience database was queried for reports of cervical cage device malfunctions from 2012 to 2021. Each report was categorized based on the failure type, implant design, and manufacturer. Two market analyses were performed. First, "failureto-market share indices" were generated by dividing the number of failures per year for each implant material by its yearly US market share in cervical spine fusion. Second, "failure-to-revenue indices" were calculated by dividing the total number of failures per year for each manufacturer by their approximate yearly revenue from spinal implants in the US. Outlier analysis was performed to generate a threshold value above which failure rates were defined as greater than the normal index.Results. In total, 1336 entries were identified, and 1225 met the inclusion criteria. Of these, 354 (28.9%) were cage breakages, 54 (4.4%) were cage migrations, 321 (26.2%) were instrumentationrelated failures, 301 (24.6%) were assembly failures, and 195 (15.9%) were screw failures. Poly-ether-ether-ketone implants had higher failure by market share indices for both migration and breakage compared with titanium. Upon manufacturer market analysis, Seaspine, Zimmer-Biomet, K2M, and LDR exceeded the failure threshold. Conclusion. The most common cause of implant malfunction was breakage. Poly-ether-ether-ketone cages were more likely to break and migrate compared with titanium ones. Many of these implant failures occurred intraoperatively during instrumentation, which underscores the need for FDA evaluation of these implants and their accompanying instrumentation under the appropriate loading conditions before commercial approval.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.