We report a computation methodology, which leads to the ability to partition the Gibb's free energy for the complexation reaction of aromatic drug molecules with DNA. Using this approach, it is now possible to calculate the absolute values of the energy contributions of various physical factors to the DNA binding process, whose summation gives a value that is reasonably close to the experimentally measured Gibb's free energy of binding. Application of the methodology to binding of various aromatic drugs with DNA provides an answer to the question "What forces are the main contributors to the stabilization of aromatic ligand-DNA complexes?"
In the present work the decomposition of the total Gibbs free energy of ligand-DNA binding onto various physical terms was accomplished for the group of nine DNA minor groove binders (MGB ligands) differing in both structure and charge state. The decomposition protocol includes the analysis of the most complete set of physical factors known to contribute to the complexation process, viz. the net change in the number of degrees of freedom (translational, rotational, vibrations of the chemical bonds and vibrations of the ligand as a whole within the binding site), the conformational entropy, van der Waals, electrostatic and hydrophobic interactions, the polyelectrolyte contribution and the net effect of changes in the number of hydrogen bonds. All of these processes are further decomposed into the interaction with the solvent and the interaction of the ligand with DNA. The principal outcome of the decomposition is the possibility of performing a comparative analysis of the energetic contribution of various physical terms and provide an answer to the question concerning what physical factors stabilize or destabilize the complexes of MGB ligands with DNA.
In the present work we develop a novel approach for quantification of the energetics of C60 fullerene aggregation in aqueous media in terms of equilibrium aggregation constant KF. In particular, it is shown that the experimental determination of the magnitude of KF is possible only within the framework of the 'up-scaled aggregation model', considering the C60 fullerene water solution as a solution of fullerene clusters. Using dynamic light scattering (DLS) data we report the value, K(F) = 56,000 M(-1), which is in good agreement with existing theoretical estimates and the results of energetic analyses. It is suggested that the proposed 'up-scaled model' may be used in any instances of non-specific aggregation resulting in formation of large spherical particles. The measurement of the translational diffusion coefficient and the dimensions of the light scattering particles using a DLS approach with respect to C60 fullerene aggregates is found to contain significant systematic errors originating from the interaction effect that is well-known for micellar solutions. As a result, corrections to the equations associated with DLS data are proposed.
The method of solution of the nonlinear Poisson-Boltzmann equation was used to calculate electrostatic energy of binding of various aromatic ligands with DNA oligomers of different length. Analysis of the electrostatic contribution was made in terms of a two-step DNA binding process: formation of the intercalation cavity and insertion of the ligand. The total electrostatic energy was also partitioned into components: the energy of atom-atom coulombic interactions and the energy of interaction with surrounding water. The results indicate that electrostatic interactions are, as a whole, unfavorable to the intercalation process and that a correct analysis of structure-energy interrelation for Ligand-DNA interactions should only be accomplished at the level of the components rather than at the level of total electrostatic energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.