Nuclear pore complexes (NPCs) mediate transport across the nuclear envelope. In yeast, they also interact with active genes, attracting or retaining them at the nuclear periphery. In higher eukaryotes, some NPC components (nucleoporins) are also found in the nucleoplasm, with a so far unknown function. We have functionally characterized nucleoporin-chromatin interactions specifically at the NPC or within the nucleoplasm in Drosophila. We analyzed genomic interactions of full-length nucleoporins Nup98, Nup50, and Nup62 and nucleoplasmic and NPC-tethered forms of Nup98. We found that nucleoporins predominantly interacted with transcriptionally active genes inside the nucleoplasm, in particular those involved in developmental regulation and the cell cycle. A smaller set of nonactive genes interacted with the NPC. Genes strongly interacting with nucleoplasmic Nup98 were downregulated upon Nup98 depletion and activated on nucleoplasmic Nup98 overexpression. Thus, nucleoporins stimulate developmental and cell-cycle gene expression away from the NPC by interacting with these genes inside the nucleoplasm.
Summary Proper control of DNA replication is essential to ensure faithful transmission of genetic material and to prevent chromosomal aberrations that can drive cancer progression and developmental disorders. DNA replication is regulated primarily at the level of initiation and is under strict cell cycle regulation. Importantly, DNA replication is highly influenced by developmental cues. In Drosophila, specific regions of the genome are repressed for DNA replication during differentiation by the SNF2 domain-containing protein SUUR through an unknown mechanism. We demonstrate that SUUR is recruited to active replication forks and mediates repression of DNA replication by directly inhibiting replication fork progression instead of functioning as a replication fork barrier. Mass-spec identification of SUUR associated proteins identified the replicative helicase member CDC45 as a SUUR-associated protein, supporting a role for SUUR directly at replication forks. Our results reveal that control of eukaryotic DNA copy number can occur through inhibition of replication fork progression.
SummaryInteraction between the Drosophila heterochromatin proteins SUUR and HP1
Regulation of replication timing has been a focus of many studies. It has been shown that numerous chromosomal regions switch their replication timing on cell differentiation in Drosophila and mice. However, it is not clear which features of these regions are essential for such regulation. In this study, we examined the organization of late underreplicated regions (URs) of the Drosophila melanogaster genome. When compared with their flanks, these regions showed decreased gene density. A detailed view revealed that these regions originate from unusual combination of short genes and long intergenic spacers. Furthermore, gene expression study showed that this pattern is mostly contributed by short testis-specific genes abundant in the URs. Based on these observations, we developed a genome scanning algorithm and identified 110 regions possessing similar gene density and transcriptional profiles. According to the published data, replication of these regions has been significantly shifted towards late S-phase in two Drosophila cell lines and in polytene chromosomes. Our results suggest that genomic organization of the underreplicated areas of Drosophila polytene chromosomes may be associated with the regulation of their replication timing.
In Drosophila, the dosage compensation complex (DCC) mediates upregulation of transcription from the single male X chromosome. Despite coating the polytene male X, the DCC pattern looks discontinuous and probably reflects DCC dynamic associations with genes active at a given moment of development in a salivary gland. To test this hypothesis, we compared binding patterns of the DCC and of the elongating form of RNA polymerase II (PolIIo). We found that, unlike PolIIo, the DCC demonstrates a stable banded pattern throughout larval development and escapes binding to a subset of transcriptionally active areas, including developmental puffs. Moreover, these proteins are not completely colocalized at the electron microscopy level. These data combined imply that simple recognition of PolII machinery or of general features of active chromatin is either insufficient or not involved in DCC recruitment to its targets. We propose that DCC-mediated site-specific upregulation of transcription is not the fate of all active X-linked genes in males. Additionally, we found that DCC subunit MLE associates dynamically with developmental and heat-shock-induced puffs and, surprisingly, with those developing within DCC-devoid regions of the male X, thus resembling the PolIIo pattern. These data imply that, independently of other MSL proteins, the RNA-helicase MLE might participate in general transcriptional regulation or RNA processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.